Monitoring the magnetar SGR1935+2154 with the MAGIC telescopes

Alicia López Oramas (IAC) I. Jiménez, T. Hassan, J. Hoang, S. Inoue for the MAGIC collaboration

Collaborators: F. Ambrosino, A. Borghese, F. Coti-Zelati, J.W.T. Hessels, F. Kirsten, B. Marcote,

O.S. Ould-Boukattine, A. Papitto and M.P. Snelders

Magnetars

- Isolated neutron stars with ultra-high magnetic fields (B ~ $10^{14}-10^{15}$ G)
- "About twenty objects" with spin periods between 0.3 and 12 s
- Types of emission:
 - Bright persistent X-ray emission ($L\chi \sim 10^{33} 10^{35} \text{ erg s}^{-1}$)
 - Powered by magnetic field decay (see Mereghetti 2008 for a review)
 - Modeled by thermal emission from the neutron star hot surface (about 0.2–0.6 keV)
 - Not detected above few KeV (Abdo et al. 2010, AleksiĆ et al. 2013)
 - Peculiar flares and outbursts on several timescales
 - Likely caused by large-scale rearrangements of the surface/magnetospheric field, accompanied or triggered by **displacements of the neutron-star crust**
 - Giant flares:
 - Short very energetic (~ 10^{44} – 10^{47} erg s⁻¹) hard spikes followed by pulsating tail.
 - Very rare events: only three events in the last 40 years in the Galaxy
 - Extragalactic giant flare detected by Fermi-GBM (Roberts et al., Nature Astronomy, 2021) and Fermi-LAT up to 1.7 GeV (Fermi-LAT coll., Nature Astronomy, 2021)

SGR 1935+2154

Observing frequency (MHz)

- Galactic magnetar located at 6.6 kpc (Zhou et al. 2020)
- Hosted in an evolved SNR (GG57.2+0.8) and (likely) interacting with a surrounding molecular cloud

- April 2020: a fast radio burst (FRB) is detected by CHIME/FRB in coincidence with this magnetar (Andersen et al. 2020)
 - The burst had a **double-peak** structure with two components ~5 ms wide separated by ~30 ms
- Confirmation by STARE2 (Bochenek et al. 2020) and European dishes: Westerbork, Onsala, Toruń (Kirsten et al. 2020)
- X-ray bursts by Swift (Barthelmy et al. 2020), INTREGRAL (Mereghetti et al. 2020), AGILE (Tavani et al. 2021), Konus-Wind (Ridnaia et al. 2021), NICER (Younes et al. 2021), Insight HXMT (Li et al. 2021)
- MAGIC could not observe due to pandemic lockdown

SGR 1935 +2154 is the first FRB in the Galaxy and the first identified FRB source

April FRB event

- It was not a giant flare but intermediate
- The X-ray burst was not especially energetic but it was harder than other flares (Mereghetti et al. 2020)
- Different models for the site of emission (see Zhang 2020 for a review):
 - inside magnetosphere
 - relativistic outflow interacting with surrounding ISM
- TeV emission can be expected according to theoretical models (Lyubarsky 2014, Murase et al. 2016, Metzger et al. 2020)

The MAGIC telescopes

- Two Cherenkov telescopes of 17 m diameter in the Northern hemisphere
- Detection of very-high-energy (VHE) gamma rays
- Energy threshold (trigger) ~50 GeV
- Integral sensitivity E >290 GeV: (0.67 ± 0.04)% of Crab Nebula flux in 50 hours (AlekiĆ et al. 2016)
- Energy resolution: 15-23 %
- Angular resolution: ~0.1°

MAGIC as optical telescopes

- Magnetars can emit fast optical bursts (FOBs) (Yang et al. 2019)
 - Spectral extension of the same radiation mechanism that generate FRBs
 - Inverse Compton upscattering
- The MAGIC telescopes are able to operate simultaneously both as VHE and optical telescopes
- The central pixel has been adapted to perform optical observations
 - Capable to detect isolated 1-ms optical flashes as faint as ~ 8 mJy (13.4 mag) with maximum sensitivity at 350 nm (Hassan et al. 2017)
- MAGIC central pixel is an optimal system to search for short optical flares (FOBs)

Gamma-ray observations

• Total MAGIC integration time: ~15 h (July-October 2020), 8 different nights of observations

- No significant VHE signal detected (neither daily nor total)
- Two observation modes tested:
 - Wobble: optimal for VHE detection
 - ON: to allow for simultaneous optical cpix adquisition

Gamma-ray observations

- Total MAGIC integration time: ~15 h (July-October 2020)
 - No significant VHE signal detected

Spectral energy distribution (SED)

MWL collaboration

- MAGIC observations in a MWL context : Multiwavelenght collaboration to monitor this magnetar
 - VHE gamma-rays/ fast optical: MAGIC
 - X-rays: Swift
 - Radio: Westerbork and Onsala
 - Optical: TNG/SiFAP2
- Simultaneous observations
 - Once/twice per month
 - Increased cadence in case of outburst

MWL lightcurve

MWL collaboration

• Coordinated observations from July to October 2020

Date	MAGIC	Swift	TNG/SiFAP2	Westerbork/Onsala
(MJD)	(gamma/optical cpix)	(X-rays)	(optical)	(radio)
59053.96-59054.04	yes/no	yes	no	yes/no
59080.88-59080.97	yes/no	no	no	no/no
59102.95-59103.03	yes/no	no	yes	yes/no
59109.95-59110.03	yes/no	yes	no	yes/no
59110.86-59110.94	yes/no	yes	no	yes/no
59111.85-59111.93	yes/no	yes	no	yes/no
59131.89-59131.98	yes/yes	yes	no	no/yes

• No detections by Westerbork/Onsala (radio), TNG (optical), MAGIC(gamma)

• Bursts detected/reported on different days by Swift (X-rays)

September: bursting activity

• Bursts reported by Swift/XRT on different days in September 2020 (Borghese et al. in prep)

- triggered an increased of cadence
- Contemporaneous observations:
 - No radio bursts seen in radio by Westerbork
 - No VHE emission detected by MAGIC

October 8, 2020: more radio bursts

- Three radio bursts detected on October 8 by CHIME/FRB (ATel #14074)
 - Confirmed by FAST on October 9 (ATel #14084)
- No X-ray counterpart
 - No signal in Swift (ATel #14076)
 - No detection in INTEGRAL (ATel #14087)
- Radio fluence lower than April 28 burst

October radio bursts

- MWL observations triggered on October 9 (one day after CHIME/FRB detection)
 - Swift ToO approved:
 - Period of bursting activity: about 25 bursts detected (Borghese et al. in prep)
 - MAGIC observed during the Swift burst window:
 - Simultaneous gamma+optical observations
 - No VHE signal detected
 - Optical data with cpix:
 - ongoing analysis for the identification of burst-like signals
 - cleaning of background events
 - Radio data:
 - No observations scheduled with Westerbork
 - Onsala observations did not reported bursting activity
- FAST performed 1-h observations on October 9 (ATel #14084): pulsed emission and radio bursts

Summary

- MWL monitoring of the magnetar SGR 1935+2154 (gamma rays, X-rays, optical and radio) ongoing:
 - Monthly monitoring and ToO observations during flaring states
 - MAGIC:
 - Gamma-ray and fast optical observations
 - No VHE emission detected and no FOBs confirmed (on-going analyis for the search of burst-like signals)
 - Swift: several bursts detected in different periods
 - Westerbork/Onsala: no radio emission
 - TNG/SiFAP2: no optical bursts reported
- SGR 1935+2154 has proven the SGR-FRB connection (see review by Zhan, Nature 2020). This magnetar is the first FRB located in the Galaxy and the first known FRB source

Monitoring the magnetar SGR1935+2154 with the MAGIC telescopes

Thank you

Alicia López Oramas (IAC) I. Jiménez, T. Hassan, J. Hoang, S. Inoue for the MAGIC collaboration

Collaborators: F. Ambrosino, A. Borghese, F. Coti-Zelati, J.W.T. Hessels, F. Kirsten, B. Marcote,

O.S. Ould-Boukattine, A. Papitto and M.P. Snelders

