

Cosmic-Ray Positrons Strongly Constrain Leptophilic Dark Matter

arXiv:2107.10261

Isabelle John isabelle.john@fysik.su.se

> July 26, 2021 ICRC 2021

Local Positron Flux

- Cosmic rays can constrain annihilating dark matter
- AMS-02 provides extremely precise cosmic-ray data
- Rising positron flux above 20 GeV: contribution from pulsars favoured over dark matter
- Constrain sharply peaked leptophilic dark matter

Previous Dark Matter Constraints From Cosmic-Ray Positrons

In This Work

• Recent positron, proton and Helium data from AMS-02 with very high statistical precision:

Particle	Energy range [GeV]	Time range	Ref.
Positrons	2 - 1000	May 2011 – Nov. 2017	PRL 122.041102
Protons	2 - 60	Feb. 2016 – May 2017	PRL 121.051101
	60 - 1800	May 2011 – Nov. 2013	PRL 114.171103
Helium	2 - 1000	May 2011 – Nov. 2013	PRL 122.041102

- Simulating cosmic-ray propagation using Galprop v.56, with many free parameters to determine astrophysical background model fitting positrons, protons and Helium
- New solar modulation model: time-, charge- and rigidity-dependent model (arXiv:2007.00669)

Astrophysical Background Model

Galprop model:

- many free parameters
- two halo heights:
 - z = 5.6 kpc (default) and
 - z = 3 kpc (conservative)
- include protons and Helium to constrain secondary positrons

Pulsar model:

- spectrum: Hooper et al. arXiv:0810.1527
- distribution: Lorimer et al. Mon. Not. Roy. Astron. Soc.372, 777
- free parameters: pulsar formation rate, energy cutoff, spectral index

Fit to AMS-02 data for:

- positrons
- protons
- Helium

Minimisers:

- iminuit
- multinest

Solar modulation:

• free parameters: ϕ_0 , ϕ_1 (heliospheric potential)

Free Parameters and Best-Fit Values (z = 5.6 kpc)

Diffusion coefficient, $D_0 \ [cm^2/s]$ $1.636 \cdot 10^{28}$ $2.786 \cdot 10^2$ Diffusion spectrum break, $D_{break} \ [MV]$ $6.067 \cdot 10^3$ $0.339 \cdot 10^2$ Spectral index below break, δ_1 0.0527 $6.489 \cdot 10^{-1}$ Spectral index above break, δ_2 0.361 $0.138 \cdot 10^{-1}$ Convection velocity, $v_c \ [km/(s \ kpc)]$ 6.345 $9.41 \cdot 10^{-4}$ Alfvén velocity, $v_{Alfvén} \ [km/s]$ 4.524 $2.643 \cdot 10^{-1}$ Proton injection spectrum break \ [MV] $5.195 \cdot 10^2$ 2.542	y
Diffusion spectrum break, D_{break} [MV] $6.067 \cdot 10^3$ $0.339 \cdot 10^3$ Spectral index below break, δ_1 0.0527 $6.489 \cdot 10^-$ Spectral index above break, δ_2 0.361 $0.138 \cdot 10^-$ Convection velocity, v_c [km/(s kpc)] 6.345 $9.41 \cdot 10^{-4}$ Alfvén velocity, $v_{Alfvén}$ [km/s] 4.524 $2.643 \cdot 10^-$ Proton injection spectrum break [MV] $5.195 \cdot 10^2$ 2.542	5
Spectral index below break, δ_1 0.0527 $6.489 \cdot 10^{-1}$ Spectral index above break, δ_2 0.361 $0.138 \cdot 10^{-1}$ Convection velocity, v_c [km/(s kpc)] 6.345 $9.41 \cdot 10^{-4}$ Alfvén velocity, $v_{Alfvén}$ [km/s] 4.524 $2.643 \cdot 10^{-1}$ Proton injection spectrum break [MV] $5.195 \cdot 10^2$ 2.542	
Spectral index above break, δ_2 0.3610.138 $\cdot 10^{-1}$ Convection velocity, v_c [km/(s kpc)]6.3459.41 $\cdot 10^{-4}$ Alfvén velocity, $v_{Alfvén}$ [km/s]4.5242.643 $\cdot 10^{-1}$ Proton injection spectrum break [MV]5.195 $\cdot 10^2$ 2.542	6
Convection velocity, v_c [km/(s kpc)]6.3459.41 \cdot 10 ⁻⁴ Alfvén velocity, $v_{Alfvén}$ [km/s]4.5242.643 \cdot 10 ⁻¹ Proton injection spectrum break [MV]5.195 \cdot 10 ² 2.542Data proton injection spectrum break [MV]5.195 \cdot 10 ² 2.542	2
Alfvén velocity, $v_{Alfvén}$ [km/s]4.524 $2.643 \cdot 10^{-1}$ Proton injection spectrum break [MV] $5.195 \cdot 10^2$ 2.542 Determine the law break intervention of the law break intervention. 4.524 $2.643 \cdot 10^{-1}$	
Proton injection spectrum break $[MV]$ 5.195 \cdot 10 ² 2.542	3
Durther an estimation had a second s	
Proton spectral index below break, γ_1 1.057 0.824	
Proton spectral index above break, γ_2^p 2.523 2.719 $\cdot 10^-$	1
Pulsar spectral index, γ_{psr} 1.337 3.082 \cdot 10 ⁻	2
Pulsar cutoff energy, E_{cut}^{psr} [GeV] 535.587 17.998	
Pulsar formation rate, \dot{N}_{100} [psr/century] 0.0930 0.00128	
Solar modulation parameter, ϕ_0 [GV] 0.378 0.229 $\cdot 10^{-10}$	2
Solar modulation parameter, ϕ_1 [GV] 1.950 0.558	
Normalization (positrons, protons) 0.815 0.178 · 10 ⁻	2
Helium injection spectrum break [MV] 305.303 · 10 ³ 56.095 · 10	3
Helium spectral index below break, γ_1^{He} 2.505 2.917 $\cdot 10^{-10}$	3
Helium spectral index above break, γ_2^{He} 2.425 1.638 $\cdot 10^{-1}$	2
Normalization (Helium) 1.100 3.866 ·10 ⁻	3

Astrophysical Background Model (z = 5.6 kpc)

Туре	$\chi^2/$ d.o.f. (d.o.f.)
total	0.63 (141)
positrons	0.88 (49)
protons	0.43 (49)
Helium	0.57 (43)

 Background model fits data to within few percent

Dark Matter Contributions

• Local positron flux for DM per annihilation

• DM mass 100 GeV,
$$\langle \sigma v \rangle = 3 \cdot 10^{-26} \text{ cm}^3/\text{s}$$

• Four leptonic final states:

•
$$\chi\chi \to \tau^+\tau^-$$

•
$$\chi\chi \to \mu^+\mu^-$$

• $\chi\chi \to \phi\phi \to e^+e^-e^+e^-$, where ϕ is a light mediator

•
$$\chi\chi \rightarrow e^+e^-$$

Computing Dark Matter Constraints

- Add DM contributions to positron flux from background model
- Fit with relevant parameters: D₀, δ₂, pulsar parameters
- DM mass range from 5 to 2000 GeV
- Create grid on annihilation cross section $\langle \sigma v \rangle$ for each DM mass
- Compute χ^2 profile for $\langle \sigma v \rangle$ to calculate limits at 95% upper CL

Results: Dark Matter Limits (z = 5.6 kpc)

- Below thermal cross section for $\tau^+\tau^-$ below 60 GeV, for $\mu^+\mu^-$ below 160 GeV, for $e^+e^-e^+e^-$ below 240 GeV and for e^+e^- below 380 GeV
- Excess at low energies < 3σ due to larger uncertainties from being at energies close to lower limit of model (at 2 GeV)

Comparison to Previous Limits

• Improvement on previous limits by a factor of ≈ 2

Summary and Conclusion

- Aim: set strong constraints on leptophilic dark matter in the local positron flux
- Very good agreement of background model with AMS-02 data
- At small masses (~ 30 GeV), constraints significantly below thermal cross section (~ 2.5×10⁻²⁸ cm³/s) for annihilations into e⁺e⁻ → rule out even subdominant dark matter contributions
- Repeated analysis for conservative halo height of 3 kpc, which gives similar constraints
- Improvement on previous limits by a factor of ≈ 2

