# Prospects for neutrino-flavor physics with in-ice radio detectors

Christian Glaser, Daniel Garcia Fernandez and Anna Nelles

based on Phys. Rev. D **102** 083011 (2020) with new developments presented in this talk



UPPSALA UNIVERSITET

### EeV neutrino astronomy

- In-ice radio detectors provide unprecedented sensitivity to EeV (10<sup>18</sup> eV) neutrinos
- Technology developed in pilot arrays (ARA, ARIANNA)
- Discovery-size detectors underway
  - RNO-G in Greenland (under construction, see #1058)
  - ARIANNA-200 (proposed, see #1190)
- Large scale detector planned for IceCube-Gen2 (see #1183)



#### Neutrino interactions at EeV energies



\*: v<sub>e</sub>-CC interactions also provide flavor sensitivity due to the LPM effect, see #1055

#### Detection principle of Askaryan radio detectors

- Askaryan effect: Time varying negative charge excess in the shower front
- Cherenkov-like time compression effect
- In ice: arccos(1/n) = 56 deg





# Energy losses of high-energy muon



### Generalization of NuRadioMC\*

new compared to Garcia et al., PRD **102** 083011 (2020) \*: github.com/nu-radio/NuRadioMC

- NuRadioMC calculates radio signals in detector from an arbitrary number of showers
  - a single hadronic shower for NC interactions
  - one hadronic and one EM shower for v<sub>e</sub> CC interactions
  - many showers from muon or tau propagation
- Enables simulation of any emission scenarios (BSM physics, manual modelling of LPM, ...)

internal looping structure



### Effect of interference

- Simulation of interference vs. all showers independently
- Constructive interference more likely than destructive interference
- Up to 7% more observable events
- Effect on pulse shapes likely more important than increase in event numbers



#### Muon neutrino effective volume



Generic array with 2km spacing and 200m deep receivers at the South Pole

new

compared to Garcia et al.,

PRD 102 083011 (2020)

- Secondary interaction of muons increase sensitivity by up to 40%
- At high energies, first and a secondary interaction detected simultaneously

#### Tau neutrino effective volume



- Generic array with 2km spacing and 200m deep receivers at the South Pole
- Secondary interaction of taus increase sensitivity by up to 40%
  - at low energies tau decay channel dominates

new

compared to Garcia et al..

PRD 102 083011 (2020)

- > 5x10<sup>17</sup> eV: tau energy losses dominate
- At high energies, many first and a secondary interaction detected simultaneously
  - flavor sensitivity

#### Golden event signature

- Simultaneous detection of first and secondary interaction
- Clear signature for muon or tau neutrino CC interactions



#### **Atmospheric Muons**

- High energy muons created in cosmic ray interactions induce in-ice showers
- Potential background, event rate uncertain due to flux uncertainties
- Using GSF cosmic ray model + SIBYLL2.3c -> 0.4 events/year for Gen2-radio (#1183)
- Also opportunity: Measurement of high-energy muon production



#### github.com/nu-radio/NuRadioMC

# Summary

- Radio emission from secondary interactions of leptons integrated into NuRadioMC
- Muon/tau leptons generated in neutrino CC interactions
  - generate visible signals in radio neutrino detectors
  - increase number of observable events by up to 40%
  - provide flavor sensitivity
  - first and secondary interaction observed simultaneously in 50% (μ)/25% (τ) at 10<sup>19</sup> eV for array at the South Pole with 200m deep receivers and 2km spacing
  - See also #1055 for flavor sensitivity from v<sub>e</sub>-CC interactions
- NuRadioMC generalized to calculate radio signals in detector for any number of in-ice showers
  - study of arbitrary emission scenarios

see also Phys. Rev. D **102** 083011 (2020) PoS(ICRC2021)1231