Characterization of the PeV astrophysical neutrino energy spectrum with IceCube using down-going tracks

Yang Lyu

for the IceCube Collaboration

July 16, 2021

International Cosmic Ray Conference (ICRC)

Yang Lyu (UC Berkeley)

ICRC 2021

Introduction

The IceCube Collaboration. Detection of a particle shower at the Glashow resonance with IceCube. *Nature* 591, 220–224 (2021). <u>https://doi.org/10.1038/s41586-021-03256-1</u>

- Measuring the astrophysical neutrino flux could give us insights into the origin of cosmic rays.
- IceCube has observed a diffuse astrophysical neutrino flux since 2013.
- The deficiency of events above 2 PeV might indicate a spectral cutoff.
- Recent IceCube analyses have limited sensitivity to PeV neutrinos.
- To fill the gap between 1 PeV and 10 PeV, we have developed a new event selection that looks for down-going through-going high-energy tracks.

Techniques

- Two techniques to reduce the 3kHz atmospheric muon background:
 - a. Stochasticity cut
 - b. IceTop veto
- The veto efficiency is parametrized in the high-background region and the veto is applied only in the veto-effective region.
- Remaining muon background in the signal region is estimated with a template fitting method.

Analysis Flowchart

Stochasticity

- Stochasticity is measured by fitting a line to the muon energy losses E_i and calculate the log of mean squared loss (MSE).
- Each squared loss is weighted by $\sqrt{E_i}$, a choice that maximizes the separation between signals and backgrounds.
- Left: stochasticity distribution of signals (nugen numu) vs. backgrounds (CORSIKA).
- There is an indistinguishable background from proton primaries that may create events where a single muon dominates.

IceTop veto

- For each IceTop hit, we calculate the time when the muon arrives at the closest approach position.
- If the IceTop hit time and the muon arrival time are within a time window, we consider this hit to be correlated with the event.
- For a given event, if there are >= 2 correlated lceTop hits, then the event is vetoed.

IceTop inefficiency

- The veto efficiency is parametrized as the IceTop inefficiency.
- Inefficiency is a function of muon energy and distance from the track to the center of lceTop array.
- Left: IceTop inefficiency from data (8 years from 2012 to 2019) in the background region (stochasticity < 0.8). In each bin, inefficiency is the fraction of events passing the IceTop veto.
- Therefore, inefficiency is between 0 and 1; a small value indicates good veto power.

IceTop inefficiency model

- Inefficiency from data is smoothened by fitting a 2-variable function. The result is the IceTop inefficiency model.
- In practice, inefficiency to the right of the low statistics boundary is manually set to a high value.
- Eventually, we only apply IceTop veto to events in the region where inefficiency is small enough.

ICRC 2021

Optimizing cuts & background estimation

- The signal region is defined by a series of cuts:
 - a. Initial selections
 - b. Stochasticity cut
 - c. IceTop inefficiency cut
 - d. Pass IceTop veto
- We optimize the cuts using the burn sample (10% of the full dataset) by maximizing the number of events in the signal region while maintaining S/B > 2.
- The backgrounds in the signal region are estimated on an event-by-event basis with a stochasticity template fitting method using CORSIKA.
- Left: black points show the fraction of data passing the veto for each stochasticity bin. The orange curve shows the result of the template fitting.
- The discrepancy at high stochasticity indicates signal.

Event visualization

- Optimization result:
 - Stochasticity > 2.5
 - IceTop inefficiency < 0.011
- For the burn sample, 2 events are found in the signal region with an estimated S/B ~ 2.2.
 Expect ~20 events after unblinding.
- Left: visualization of one event.

20% systematic uncertainties (not finalized)

	muon energy [PeV]	closest dist to IceTop center [m]	zenith [deg]	stochasticity	IceTop inefficiency	event-wise background
Event 1 (left)	$3.2^{+2.1}_{-1.2}$	1606	69	2.73	1e-5	0.11
Event 2	$1.2\substack{+0.7 \\ -0.5}$	1034	40	2.97	0.00037	0.58

Systematics

- Three types of systematics:
 - a. Background estimation uncertainties
 - Snow effect
 - Hyperparameters in stochasticity templates
 - b. Detector systematics
 - DOM efficiency
 - Ice absorption/scattering
 - Hole-ice effects
 - c. Flux uncertainties
 - Conventional and prompt normalizations
- Parametrized as nuisance parameters in the likelihood function:

$$\ln L(\boldsymbol{\theta}, \boldsymbol{\xi}) = \sum_{i} \ln \left(\frac{e^{-\mu_{i}} \mu_{i}^{k_{i}}}{k_{i}!} \right) + \sum_{j} \left(\frac{\xi_{j} - \xi_{j}^{*}}{\sigma[\xi_{j}]} \right)^{2}$$
Physics parameters
Nuisance parameters

Yang Lyu (UC Berkeley)

Conclusions

- We have developed a new event selection for PeV neutrinos using down-going tracks.
- We use stochasticity cuts and IceTop veto to reduce atmospheric muon backgrounds.
- The sample we obtain is at high energy and is relatively pure.
- As a next step, this sample will be combined with the HESE sample to do a combined fit; the existence of the spectral cutoff will be tested.
- This sample will be released as real time alerts.

Backup

After initial selections

• Initial selection: muon energy > 300 TeV, zenith < 90°, track length > 600 m, etc.

Snow effect

Flux

https://docushare.icecube.wisc.edu/dsweb/Get/Document-88451/Defense Austin Schneider.pdf