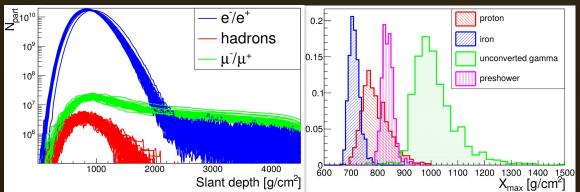
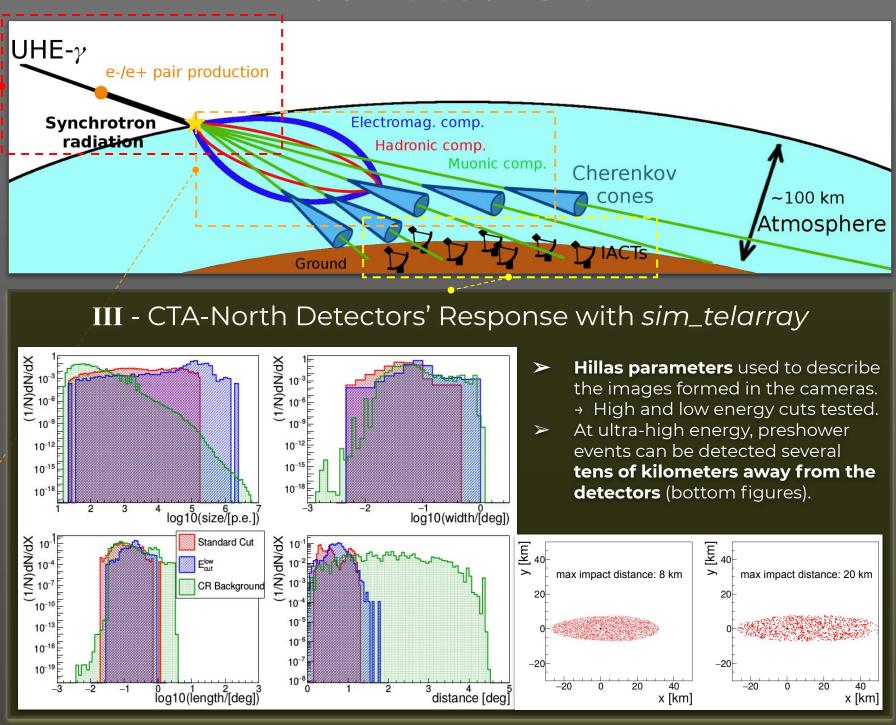

Event rates of UHE photons cascading in the geomagnetic field at CTA-North

K. Almeida Cheminant^{1*}, D. Góra¹ for the **CREDO** Collaboration[†] ¹ Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland * presenter: kevin.almeida-cheminant@ifj.edu.pl † website: http://credo.science


Abstract

Photons in the EeV range and beyond are expected from top-down models of UHECR production and from the GZK effect. As they reach the Earth, they have a non-zero probability of converting into an electron/positron pair in the geomagnetic field and of producing an electromagnetic shower above the atmosphere. In this work, we present a new method to search for cascading UHE photons with gamma-ray telescopes based on Monte-Carlo simulations and multivariate analyses. Considering the future CTA-North experiment in La Palma, Spain, we show that such a method provides an efficient cosmic-ray background rejection with little loss of cascading UHE photon events. We also estimate that if gamma-ray bursts photon emission extends to the EeV regime, the number of expected events in 30 hours of observation time can go up to 0.17.

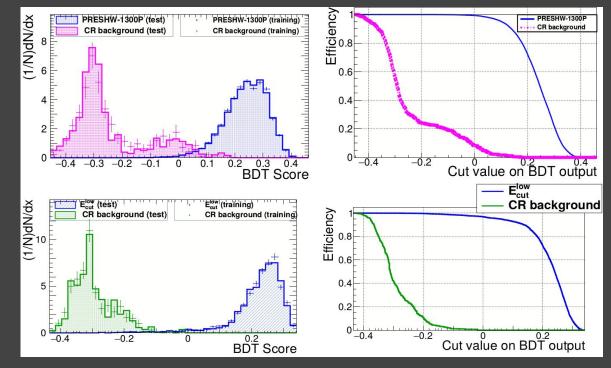


- @ CTA-North: maximum conversion for nearly-horizontal directions, in the northern direction.
- Large number of UHE particles contained within few square centimeters at the top of the atmosphere.

II - Extensive Air Showers with CORSIKA

- Looking at nearly-horizontal air showers exposes the muonic **component** and a good gamma/hadron separation is retrieved at ultra-high energies.
- X_{max} of preshower events closer to X_{max} of hadronic showers, on average.

International Cosmic-Ray Conference 2021


July 12th – 23rd , 2021 Berlin, Germany

The Simulation Chain

V - Event rates from GRBs

	AUGER _{point}	$\langle \mathrm{TA}_{E>31.6\mathrm{EeV}} \rangle$	$\max(\mathrm{TA}_{E>31.6\mathrm{EeV}})$
$\phi_{\gamma-p.}$ (40 EeV) [km ⁻² yr ⁻¹]	0.034	0.0073	0.019
N_{preshw} – non-transient ($R = 1$)	2.7×10^{-4}	5.7×10^{-5}	1.5×10^{-4}
-R = 5	1.4×10^{-3}	2.9×10^{-4}	7.6×10^{-4}
-R = 652	0.17	0.037	0.09

- Flux of UHE photons obtained from **upper limits** set by Auger and TA on point sources.
- *R*: boosting factor of gamma-ray emission obtained from GRB observations (R=5 for HESS', R=652 for MAGIC's) compared to non-transient mode.

IV - Preshower/CR Background separation

Boosted decision trees provide a clear separation for both high (top panel) and low (bottom panel) energy cuts.

