ICRC2021(Indico-ID1421)

A northern sky survey for ultra-high-energy gamma-ray source using the Tibet air-shower array and muon-detector array.

Xu Chen for the Tibet ASγ Collaboration Institute of High Energy Physics(IHEP), Chinese Academy of Sciences (CAS) <u>chenxu@ihep.ac.cn</u>

The Tibet ASy Collaboration

M. Amenomori¹, S. Asano², Y. W. Bao³, X. J. Bi⁴, D. Chen⁵, T. L. Chen⁶, W. Y. Chen⁴, Xu Chen⁴, Y. Chen³, Cirennima⁶, S. W. Cui⁷, Danzengluobu⁶, L. K. Ding⁴, J. H. Fang^{4,8}, K. Fang⁴, C. F. Feng⁹, Zhaoyang Feng⁴, Z. Y. Feng¹⁰, Qi Gao⁶, A. Gomi¹¹, Q. B. Gou⁴, Y. Q. Guo⁴, Y. Y. Guo⁴, H. H. He⁴, Z. T. He⁷, K. Hibino¹², N. Hotta¹³, Haibing Hu⁶, H. B. Hu⁴, K. Y. Hu^{4,8}, J. Huang⁴, H. Y. Jia¹⁰, L. Jiang⁴, P. Jiang⁵, H. B. Jin⁵, K. Kasahara¹⁴, Y. Katayose¹¹, C. Kato², S. Kato¹⁵, T. Kawashima¹⁵, K. Kawata¹⁵, M. Kozai¹⁶, D. Kurashige¹¹, Labaciren⁶, G. M. Le¹⁷, A. F. Li^{18,9,4}, H. J. Li⁶, W. J. Li^{4,10}, Y. Li⁵, Y. H. Lin^{4,8}, B. Liu¹⁹, C. Liu⁴, J. S. Liu⁴, L. Y. Liu⁵, M. Y. Liu⁶, W. Liu⁴, X. L. Liu⁵, Y.-Q. Lou^{20,21,22}, H. Lu⁴, X. R. Meng⁶, Y. Meng^{4,8}, K. Munakata², K. Nagaya¹¹, Y. Nakamura¹⁵, Y. Nakazawa²³, H. Nanjo¹, C. C. Ning⁶, M. Nishizawa²⁴, M. Ohnishi¹⁵, S. Okukawa¹¹, S. Ozawa²⁵, L. Qian⁵, X. Qian⁵, X. L. Qian²⁶, X. B. Qu²⁷, T. Saito²⁸, Y. Sakakibara¹¹, M. Sakata²⁹, T. Sako¹⁵, T. K. Sako¹⁵, J. Shao^{4,9}, M. Shibata¹¹, A. Shiomi²³, H. Sugimoto³⁰, W. Takano¹², M. Takita¹⁵, Y. H. Tan⁴, N. Tateyama¹², S. Torii³¹, H. Tsuchiya³², S. Udo¹², H. Wang⁴, Y. P. Wang⁶, Wangdui⁶, H. R. Wu⁴, Q. Wu⁶, J. L. Xu⁵, L. Xu⁹, Z. Yang⁴, Y. Q. Yao⁵, J. Yin⁵, Y. Yokoe¹⁵, N. P. Yu⁵, A. F. Yuan⁶, L. M. Zhai⁵, C. P. Zhang⁵, H. M. Zhang⁴, J. L. Zhang⁴, X. Zhang³, X. Y. Zhang⁹, Y. Zhang⁴, Yi Zhang³³, Ying Zhang⁴, S. P. Zhao⁴, Zhavisangzhu⁶ and X. X. Zhou¹⁰

¹Department of Physics, Hirosaki University, Hirosaki 036-8561, Japan. ²Department of Physics, Shinshu University, Matsumoto 390-8621, Japan. ³School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China. ⁴Key Laboratory of Particle Astrophysics. Institute of High Energy Physics. Chinese Academy of Sciences, Beijing 100049, China. ⁵National Astronomical Observatorics, Chinese Academy of Sciences, Beijing 100012, China, ⁶Department of Mathematics and Physics, Tibet University, Lhasa 850000, China. ⁷Department of Physics, Hebei Normal University, Shijiazhuang 050016, China. ⁸University of Chinese Academy of Sciences, Beijing 100049, China. ⁹Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE). Shandong University, Qingdao 266237, China. ¹⁰Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China. ¹¹Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan. ¹²Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan. ¹³Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan. ¹⁴Faculty of Systems Engineering, Shibaura Institute of Technology, Omiya 330-8570, Japan. ¹⁵Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan. ¹⁶Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara 252-5210, Japan.

¹⁷National Center for Space Weather, China Meteorological Administration, Beijing 100081, China. ¹⁸Sebool of Information Science and Engineering, Shandong Agriculture University, Taian 271018, China. ¹⁹Department of Astronomy, School of Physical Sciences, University of Science and Technology of China. Hefei 230026, China, ²⁰Department of Physics and Tsinghua Centre for Astrophysics (THCA), Tsinghua University, Beijing 100084. China. ²¹Tsinghua University-National Astronomical Observatories of China (NAOC) Joint Research Center for Astrophysics, Tsinghua University, Beijing 100084, China. ²²Department of Astronomy, Tsinghua University, Beijing 100084, China. ²³College of Industrial Technology, Nihon University, Narashino 275-8576, Japan. ²⁴National Institute of Informatics, Tokyo 101-8430, Japan. ²⁵National Institute of Information and Communications Technology, Tokyo 184-8795, Japan. ³⁶Department of Mechanical and Electrical Engineering, Shangdong Management University, Jinan 250357. China. ²⁷College of Science, China University of Petroleum, Qingdao 266555, China. ²⁸ Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523, Japan. ²³Department of Physics, Konan University, Kobe 658-8501, Japan. ³⁰Shonan Institute of Technology, Fujikawa 251-8511, Japan. ¹¹Research Institute for Science and Engineering, Waseda University, Tokyo 162-0044, Japan. ³²Japan Atomic Energy Agency, Tokai-mura 319-1195, Japan. ³⁵Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, China.

The Tibet ASy experiment

At Yangbajing, Tibet, China(90.522°E, 30.102°N, 4300m a.s.l)

Tibet-III+MD

- Num of Hit >=16
- Zenith<60°
- inout=(5,6)
- 0.3<shower age<1.3
- Point source mode
- Equiz-zenith method

Live time 719 days

Tibet-III

- Area: 65700 m²
- Each detector: 0.5 m²
- Energy: TeV-PeV
- Energy resolution:
 - 40%~10TeV
 - 20%~100TeV
- Angular resolution:
 - 0.4°~10 TeV
 - 0.2°~100 TeV
- Field of View ~2 Sr

$MD(P/\gamma)$

- Effective area: 3400 m²
- Each detector: 54 m²
- Underground 2.4m

Muon detector(MD)(P/γ)

Northern sky survey

Tibet-III 1915days Tibet-III + MD 719days

The Tibet-MD array significantly improves its gamma-ray sensitivity in the 10-1000 TeV energy region.

Allsky survey $\sigma > 5$

Associated Source	RA[deg]	Dec[Deg]
Crab	83.65	22.02
TeV J1825-134	276.52	-13.4
TeV J1831-099	277.58	-9.84
TeV J1840-055 TeV J1837-065	279.91	-6.03
TeV J1844-035	280.92	-3.58
TeV J1849-000	282.84	0.03
TeV J1857+026	284.70	2.66
MGRO J1908+06	287.01	6.20
2HWC J1955+285	298.87	28.63
Cygnus OB1	305.02	36.77
Cygnus OB2	308.01	41.19
SNR G106.3+2.7	336.77	60.88

This work

Standard Candle

Crab Nebula

Physics about browse press collections

VIEWPOINT

Highest Energy Astrophysical Photons Detected

Rene A. Ong

Department of Physics and Astronomy, University of California, Los Angeles, CA, USA

- >100TeV, we observed 5.6σ gamma ray emission.
- First Detection of Photons with Energy beyond 100 TeV from an Astrophysical Source
- Spectra can be explained by leptonic origin via IC process

(M. Amenomori et al., PRL,, 2019)

Potential associated with PSR Cygnus region J1826-134

Paper accepted by PRL(2021), arxiv:2107.01064

Please refer to talks by Y.Katayose (indico-ID334)

- PSR J2021+3651
- PSR J2032+4127

- PSR J1826-1334
- PSR J1826-1256

Potential associated with SNR SNR G106.3+2.7 MGRO J1908+06

(M. Amenomori et al., Nature Astronomy, 2021) Please refer to talks by Dr M.Ohnishi (Indico-ID1430)

- PSR J2229+6114
- SNR G106.3+2.7
- Coincident with CO emmision

- PSR J1907+0602
- SNR G40.5-0.5

Extend gamma ray halo Geminga

- >10 TeV
- diffuse searching mode
- Equi-Dec method
- Geminga Pulasr
- Gamma ray Halo

This work

Summary

- •The Tibet ASy experiment has a wide field of view and large effective area.
- •The Tibet-MD array significantly improves its gamma-ray sensitivity in the 10-1000 TeV energy region.
- •13 Very-High-Energy gamma-ray sources including large extended gamma ray halos had been seen by the Tibet ASγ experiment

Thanks!!