Upgrade of Honda atmospheric neutrino flux calculation with implementing recent hadron interaction measurement

K. Sato (Nagoya Univ.), 28 May. 2020 @ ICRC2021

 tune the Honda flux simulation by using accelerator hadron measurements

Honda flux simulation

atmospheric neutrino : signal for physics (oscillation, etc...)
→ the prediction of its flux is necessary

Honda flux MC

developed by M. Honda (U of Tokyo, ICRR) [PRD 92, 023004 (2015) and references in it]

- full MC simulation for air shower
- \rightarrow provides v_{μ} , \overline{v}_{μ} , v_{e} , \overline{v}_{e} flux at any detector position
- **3D** simulation
 - air density model NRLMSISE-00
 - geomagnetic model IGRF
 - precise primary particle flux based on AMS02 data
- has been widely used (e.g.: Super-Kamiokande analysis)
- FORTRAN code

uncertainty of atm. v flux

hadron production hadronic cross-section

- hadronic interactions in air shower
 → dominant!
 - Hadronic Model
 - **JAM** (E<31GeV)
 - **DPMJET-III** (otherwise)
- tuned by using atm. µ data by Honda-san

limitation of tuning

- low E_v (<1GeV): E deposit of μ
- high E_{v} (>10 GeV): K contribution

activity of Nagoya ISEE CR group

Y. Itow

accelerator-data-driven tuning

H. Menjo

- several beam experiments are conducted HARP, BNL E910, NA61/SHINE ...
 - present precise $\frac{d\sigma}{dpd\Omega}$ of hadron production
 - mainly for long-baseline v experiment

→ incorpolate these measurement into Honda flux

Maybe the measurement data is insufficient but...

- can reduce uncertainty by combining the muon study
- can reveal which phase space is important for atm. v production, and feed back to the beam experiment
- common treatment of sys. error between T2K-SK

tuning (weighting method)

What we want to do:

• correct difference of differential cross-section between data and MC

 \rightarrow apply the *weight*

$$W = \frac{\left(E\frac{d^{3}\sigma}{dp^{3}}\right)_{data}}{\left(E\frac{d^{3}\sigma}{dp^{3}}\right)_{MC}}$$

for each hadron interaction in Honda flux MC

accelerator data

coverage of phase space related to $v_{\mu}\,production$

These beam data cover > 70% of phase space for >1GeV v production

parameterization

data : discrete beam P & finite binning \rightarrow parameterization

fitting function

parameterization

difficult to parameterize beam energy dependence

 \rightarrow divide into small E sections. fitting for each section.

fitting reduced chi-square

weight table

for p(31 GeV) + Air $\rightarrow \pi^+$ + X (MC uses JAM model)

PT [GeV]

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

• make a *table* of weight $W = \frac{\left(E\frac{d^3\sigma}{dp^3}\right)_{data}}{\left(E\frac{d^3\sigma}{dp^3}\right)_{MC}}$

- prepare 35 tables in pin =3--400 GeV
- MC uses JAM (E<31GeV), dpmJet3 (>31)
 - JAM is in better agreement with data

result of weighting

10

Summary

upgrading Honda flux MC

Nagoya group acitivity

- preparing manuals
- Fortran \rightarrow C++ interface
- implementing accelerator-data-driven tuning
- correct the difference of $d^3\sigma/dp^3$ between data and MC
 - data from NA61, NA49, HAPR, BNL-E910, NA56/SPY...
 - success to parameterize in 3--450 GeV/c beam P.
 - reduced chi2 < ~ 2
- preliminary result
 - consistent with the conventional flux
 - tendency to be ~5--10% smaller
- future plan
 - · combined analysis of accelerator tuning and µ tuning
 - → reduce systematic uncertainty