A New Cosmic-Ray-driven Instability

Mohamad Shalaby

Leibniz Institute for Astrophysics Potsdam

 $37^{\rm th}$ International Cosmic Ray Conference

July 15, 2021

Estimating time spent by CRs in galactic disk

 In presence of uniform mag. field: GeV CR aligned with the field travel with c/3

Estimating time spent by CRs in galactic disk

- In presence of uniform mag. field: GeV CR aligned with the field travel with c/3
- Young thin disk Milky-way h = 100 200 pc
 - $\Rightarrow~t_{
 m conf} \lesssim 10^3$ years.

Estimating time spent by CRs in galactic disk

- In presence of uniform mag. field: GeV CR aligned with the field travel with c/3
- Young thin disk Milky-way h = 100 - 200 pc $\Rightarrow t_{conf} \leq 10^3$ years.
- From radioactive dating:
 - $t_{
 m conf} \sim 2-3 imes 10^7$ years.

Estimating time spent by CRs in galactic disk

- In presence of uniform mag. field: GeV CR aligned with the field travel with c/3
- Young thin disk Milky-way h = 100 - 200pc
 - $\Rightarrow~t_{
 m conf}\lesssim 10^3$ years.
- From radioactive dating: $t_{\rm conf} \sim 2 - 3 \times 10^7$ years. • ISM:

 $t_{
m inst} \sim 10-20$ hrs, $t_{
m coll}(i,i) \sim$ year

Estimating time spent by CRs in galactic disk

- In presence of uniform mag. field: GeV CR aligned with the field travel with c/3
- Young thin disk Milky-way h = 100 - 200pc
 - $\Rightarrow~t_{
 m conf}\lesssim 10^3$ years.
- From radioactive dating: $t_{\rm conf} \sim 2 - 3 \times 10^7$ years. • ISM:

 $t_{
m inst} \sim 10-20$ hrs, $t_{
m coll}(i,i) \sim$ year

⇒ CR strongly couple by scattering on magnetic field irregularity

Plan for the talk:

- How GeV cosmic rays couple strongly; plasma instabilities.
- Applications of the new instability
 - Electron injection at non-relativistic magnetized shocks.
 - Q CR dynamical impacts on galactic scales (see also Timon Thomas talk).

Electron-ion magnetized plasma

Waves along B_0 :

• Electrostatic

Electron-ion magnetized plasma

background B_0

Waves along B_0 :

- Electrostatic
- Electromagnetic Circularly (R & L) polarized waves

electron-ion magnetized plasma

electron-ion magnetized plasma

electron-ion magnetized plasma

L Alfvén wave: shear with $v_{
m ph} \lesssim v_A$

Shalaby+2020; ApJ 908 206

Dispersion relation ($\Omega_{e,0} = -m_i/m_e\Omega_{i,0}$):

$$\frac{k^{2}c^{2}}{\omega^{2}} - 1 = \frac{\omega_{i}^{2}}{\omega\left(-\omega \pm \Omega_{i,0}\right)} + \frac{\omega_{e}^{2}}{\omega\left(-\omega \pm \Omega_{e,0}\right)} \quad \Leftarrow \text{Background}$$

$$CRe \Rightarrow + \frac{\alpha\omega_{e}^{2}}{\gamma_{e}\omega^{2}} \left\{ \frac{\omega - k\upsilon_{dr}}{k\upsilon_{dr} - \omega \mp \Omega_{e,0}/\gamma_{e}} \right\}$$

$$CRi \Rightarrow + \frac{\alpha\omega_{i}^{2}}{\gamma_{i}\omega^{2}} \left\{ \frac{\omega - k\upsilon_{dr}}{k\upsilon_{dr} - \omega \pm \Omega_{i}} - \frac{\upsilon_{\perp}^{2}\left(k^{2}c^{2} - \omega^{2}\right)/c^{2}}{2\left(k\upsilon_{dr} - \omega \pm \Omega_{i}\right)^{2}} \right\}$$

New CR-driven instability

New CR-driven instability

Shalaby+2020; ApJ 908 206 Intermediate-scale: two peaks $\frac{kc}{\omega_i} \sim \left\{ \frac{v_{\rm dr}}{v_A}, \ \frac{m_r v_A}{v_{\rm dr}} - \frac{v_{\rm dr}}{v_A} \right\} \Rightarrow \text{merge} \Rightarrow \frac{v_{\rm dr}}{v_A} = \sqrt{m_r}/2$ 20 $\frac{-v_{\rm dr}/v_{\rm A}}{-v_{\rm dr}/v_{\rm A}} = 15.$ 15 Γ_k/Γ_s 10 5 $v_{\perp}/v_{\rm A} = 15.$ 0 0.10 10 100 0.01 belu. ICRC 2021. Berlin Mohamad Shalaby

New CR-driven instability

Intermediate-scale: two peaks

Shalaby+2020; ApJ 908 206

Kinetic simulation using Particle-in-Cell: $v_A = 0.01c, \ m_i/m_e = 1836, \ v_{dr,0} = 5v_A, \ v_{\perp,0} = 13v_A \Rightarrow \theta_0 \sim 70^o$

Particle-in-cell algorithm

$$v_A = 0.01c, \ m_i/m_e = 1836, \ v_{dr,0} = 5v_A, \ v_{\perp,0} = 13v_A \Rightarrow \theta_0 \sim 70^o$$

$$v_A = 0.01c, \ m_i/m_e = 1836, \ v_{dr,0} = 5v_A, \ v_{\perp,0} = 13v_A \Rightarrow \theta_0 \sim 70^o$$

Mohamad Shalaby ICRC 2021, Berlin

To summerize:

- New instabilities with much faster growth rate if $v_{
 m dr}/v_A < \sqrt{m_r}/2$
- Only 2 successful full-kinetic simulations of gyroscale instability
 Holcomb+2019 @ v_A = 10⁻¹c, m_r = 100 (energy error ~ 300ε_{cr})
 MS+2020 @ v_A = 10⁻²c, m_r = 1836 (energy error ~ 0.002ε_{cr})

Both report no-full isotropization in general

Next: applications

electron injection Problem:

- electrons: $r_e = (m_e/m_i)r_i$.
- electrons can not scatter at shock front
- Intermediate-scale instability provide large-amplitude magnetic perturbation at sub ion-gyroscale ⇒ a solution?

Acceleration at non-relativistic shocks

CD rest frame; mi/me=1836; $v_u = -0.1c$; $v_A = 0.00625c$.

In the self-confinement picture

$$\frac{d\varepsilon_c}{dt} + \nabla \cdot \left[\vec{W}(\varepsilon_c + P_c) - \kappa \cdot \nabla \varepsilon_c \right] = \vec{W} \cdot \nabla P_c, \tag{1}$$

$$\vec{W} \cdot \nabla P_c = -2 \int d\omega dk \Gamma(\omega, k) I(\omega, k), \qquad (2)$$

$$|\boldsymbol{\kappa}| \sim \kappa_{\parallel} \sim rac{c^2}{2} \left\langle rac{1-\mu^2}{
u_++
u_-}
ight
angle$$
 (3)

 \vec{W} is the effective streaming speed of CRs

New instability: higher linear growth rate

- larger pressure gradient: ∇P_c
- larger scattering rate \Rightarrow lower diffusion coefficient
- Very low lon-neutral damping rate (10^6 smaller) \Rightarrow mechanism for efficient coupling of MeV CRs to partially ionized plasma, e.g., MC

- CR strongly couple via kinetic instabilities
- New instability:
 - much higher rate \Rightarrow new CR transport
 - Can't be suppressed by ion-neutral friction (damping) ⇒ potential role in the ionization of molecular clouds by MeV CRs.
- CR impact/regulate galactic outflows and ISM chemistry
- CR transport mode strongly impact CGM gas and magnetic field distribution

Thank you for your attention

This project has received funding from the European Research Counsil (ERC) under the European Union's Horizon 2020

research and innovation program (grant agreement No CRAGSMAN-646955)