

# The Wavelength-shifting Optical Module (WOM) for the IceCube Upgrade John Rack-Helleis<sup>1</sup>, Anna Pollmann<sup>2</sup> and Martin Bonson<sup>3</sup> for the IceCube Upgrade

Data

cable

Electronic

Electronic

boards

1.) PMT

Silicone Sealing

2.) Wavelength-

shifting tube

3.) Quartzglas

4.) Optical filling material

Harness Clamp

Harness

Endcap

cable

**Load Bearing** 

Pressure Housing

Feedthrough



# The IceCube Upgrade

- First extension of IceCube detector since completion in 2010
- Planned for deployment 2022/2023 Deployment of over 700 additional
- modules in dense spacing
- Improve event reconstruction. lower energy threshold and more precise ice calibration
- In addition to the production modules (mDOMs and d-Eggs) there will be a number of R&D modules including 12 Wavelengthshifting Optical Module (WOMs)



### 1. PMT FT9390

#### PMT choice based on:

- Reasonably large diameter to make best use of the available drill hole diameter
- Good efficiency at the edge of the photocathode as needed for coupling to the WLS tube
- Low thermionic noise to demonstrate good noise characteristics for supernova detection

3. Quartz Vessel

- Gain>5 · 10<sup>6</sup> at safe voltages, for single photon detection using the selected DAQ
- Flat cathode surface to ease gluing of the tube

## 2. Wavelength-shifting tube

- ➤ Wavelength-shifting tube described in terms of efficiency  $\epsilon$ (probability of a photon incident on tube is absorbed, reemitted and guided to the read out PMTs)
- $\triangleright$   $\epsilon$  is function of the position of the light entry point on tube in cylindrical coordinates  $\phi$  and z and incident lights wavelength  $\lambda$



# The Wavelength-shifting Optical Module (WOM)

- Detector consists of transparent quartz tube, which is coated in wavelength-shifting paint
- Incident UV photons are absorbed, wavelength shifted and reemitted inside the tube
- Photons are guided to readout PMTs via total internal reflection



#### Pressure Vessel:

- Low noise from impurities in the order of 100 Hz for a 19 kg pressure vessel
- Good transmission between 250 and 400 nm



# 4. Filling material

#### Filling Material choice:

- Optical transparency
- Refractive index around n = 1.30
- Chemical interness
- > PFPE as optimal choice



# Features of the WOM or "why do we built this?"

- Idea: Shift photosensitive area to WLS coated tube to achieve large sensitive area with comparably small photocathode area
- UV sensitivity: Matched to Cherenkov emission Low noise due to small
- photocathode area: Ideal for supernova detection



# **WOM** properties

- > Determined effective area of the WOM to be approximately 19  $cm^2$
- High sensitivity between 280 and 400 nm
- Module noise is dominated purely by PMT thermionic noise contribution. Quartz vessel contributes around 100 Hz
- Timing resolution dominated by WLS tube, ~10 ns at a fixed position







#### Sponsored by:

Federal Ministry of Education and Research



- <sup>1</sup> John Rack-Helleis, JGU Mainz jorackhe@uni-mainz.de
- <sup>2</sup> Anna Pollman, Uni Wuppertal
- anna.pollmann@uni-wuppertal.de 3 Martin Rongen, JGU Mainz
- mrongen@uni-mainz.de