

On the need for unbiasing azimuthal asymmetry in signals measured by surface detector arrays

Quentin Luce, Markus Roth, David Schmidt, Darko Veberič Institute for Astroparticle Physics, Karlsruhe Institute of Technology

ICRC2021 – 16th July 2021

Azimuthal asymmetry in signals observed in the water-Cherenkov detector of the surface detector is combination of:

geometrical effects from the inclination of the shower
attenuation of the charged particles from their point of emission to the ground

From the surface detector of the Pierre Auger Observatory: introduction of a bias (~40 m) in the reconstruction of the core of the shower when axisymmetric LDF is used

 $S(r,\zeta) = S(1000) f_{\text{LDF}}(r) \left[1 + \alpha(r,\theta,S(1000)) \cos \zeta\right]$

Parametrisation of $\alpha(r, \theta, S(1000))$ using simulations

Simulated data-sets

- hadronic model : QGSJet-II.04, EPOS-LHC
- primary : Proton, Iron
- Continuous library $lg(E \ l \ eV) = 18.5 - 20.0$ $\theta \ l^\circ = 0 - 60$ (flat distribution in sin² θ)

- surface detector of the **Pierre Auger Observatory**

- **20 dense rings** = 24 detectors at a fixed distance from the shower axis

- $\overline{Off}\underline{line}$ simulation and reconstruction frameworks^{1,2}

¹ S. Argirò et al., *Nucl. Instrum. Meth. A* **580** (2007) 1485-1496, [0707.1652] ² A. Aab et al. [Pierre Auger Coll.], *JINST* **15** (2020) P10021, [2007.09035]

7

Evolution with the inclination

Amplitude vs distance

Evolution with the distance

Electromagnetic vs Muonic components

Electromagnetic vs Muonic components

Negative amplitude?

 $\alpha \propto 2 + \frac{d(\theta)}{\lambda} - \gamma$

Amplitude of the asymmetry³ = combination of:

- attenuation over the distance from the emission point to the ground

 $f_{\text{att}}(d(\theta)) = \exp(-d(\theta)/\lambda)$

- dependence of particle density in a fixed solid angle

$$\Delta\Omega \propto 1/d^2$$

- angular distribution function of the emission of particles

 $ADF(\delta) \propto (\delta/\delta_0)^{-\gamma}$

Impact on the core reconstruction

Bias in the core position:

Core bias = mean value in the upstreamdownstream direction

No bias in the perpendicular direction

Resolution of the core position:

Core resolution = distance at which 68.3% of the cumulative distribution of the distance between the simulated and reconstructed positions of the core, is reached

Impact on the core reconstruction

Impact on zenith and S(1000)

Uncertainties in S(1000):

Comparison of:

 $S(1000)_{MC}$ S(1000) computed from the ring of 24 detectors at 1000 m

 $S(1000)_{rec}$ reconstructed S(1000)

Angular resolution:

Opening-angle:

 $\sin \eta = |\hat{a}_{\rm MC} \times \hat{a}_{\rm rec}|$

Angular resolution = angle at which **68.3%** of the cumulative distribution of η is reached

To conclude...

Azimuthal asymmetry in signals observed in the water-Cherenkov detector of the surface detector are combination of:

- **geometrical effects** from the inclination of the shower

- **attenuation of the charged particles** from their point of emission to the ground

From simulations, **development of a model describing the amplitude of the asymmetry**:

- suppression of the bias
- improvement of the resolution

No impact observed on the uncertainties in S(1000) or on the angular resolution

To conclude...

Azimuthal asymmetry in signals observed in the water-Cherenkov detector of the surface detector are combination of:

- **geometrical effects** from the inclination of the shower

- **attenuation of the charged particles** from their point of emission to the ground

Amplitude of the asymmetry is a **balance between electromagnetic and muonic components** of the shower:

- scintillator detectors?
- muon deficit in simulations?

Trugarez !*

* Thank you!