On the need for unbiasing azimuthal asymmetry in signals measured by surface detector arrays

Quentin Luce, Markus Roth, David Schmidt, Darko Veberič Institute for Astroparticle Physics, Karlsruhe Institute of Technology \mathbb{N} IIT. Germany

Azimuthal asymmetry in signal

Azimuthal asymmetry in signals observed in the water-Cherenkov detector of the surface detector is combination of:

- geometrical effects from the inclination of the shower - attenuation of the charged particles from their point of emission to the ground

From the surface detector of the Pierre Auger Observatory: introduction of a bias ($\sim 40 \mathrm{~m}$) in the reconstruction of the core of the
 shower when axisymmetric LDF is used

Azimuthal asymmetry in signal

Azimuthal asymmetry in signal

$$
|\zeta|<\pi / 2 \quad \text { Upstream region }
$$

Azimuthal asymmetry in signal

$$
S(r, \zeta)=S(1000) f_{\mathrm{LDF}}(r)[1+\alpha(r, \theta, S(1000)) \cos \zeta]
$$

Parametrisation of $\alpha(r, \theta, S(1000))$ using simulations

Simulated data-sets

- hadronic model :

QGSJet-II.04, EPOS-LHC

- primary : Proton, Iron
- Continuous library
$\lg (E / \mathrm{eV})=18.5-20.0$
$\theta /{ }^{\circ}=0-60$ (flat distribution in $\sin ^{2} \theta$)
- surface detector of the Pierre Auger Observatory
- 20 dense rings $=24$ detectors at a fixed distance from the shower axis
- $\overline{\text { Off }}$ line simulation and reconstruction frameworks ${ }^{1,2}$

Amplitude of the asymmetry

Evolution with the inclination

Amplitude vs distance

Evolution with the distance

Electromagnetic vs Muonic components

Electromagnetic vs Muonic components

Negative amplitude?

Amplitude of the asymmetry ${ }^{3}=$ combination of:

- attenuation over the distance from the emission point to the ground

$$
f_{\mathrm{att}}(d(\theta))=\exp (-d(\theta) / \lambda)
$$

- dependence of particle density in a fixed solid angle

$$
\Delta \Omega \propto 1 / d^{2}
$$

- angular distribution function of the emission of particles

$\operatorname{ADF}(\delta) \propto\left(\delta / \delta_{0}\right)^{-\gamma}$

$$
\alpha \propto 2+\frac{d(\theta)}{\lambda}-\gamma
$$

Impact on the core reconstruction

Bias in the core position:

Core bias = mean value in the upstreamdownstream direction

No bias in the perpendicular direction

Resolution of the core position:

Core resolution = distance at which 68.3\% of the cumulative distribution of the distance between the simulated and reconstructed positions of the core, is reached

Impact on the core reconstruction

Impact on zenith and $S(1000)$

Uncertainties in S(1000):

Comparison of:
$S(1000)_{\text {MC }} S(1000)$ computed from the ring of 24 detectors at 1000 m
$S(1000)_{\text {rec }}$ reconstructed $S(1000)$

Angular resolution:

Opening-angle:

$$
\sin \eta=\left|\hat{a}_{\mathrm{MC}} \times \hat{a}_{\mathrm{rec}}\right|
$$

Angular resolution = angle at which 68.3\% of the cumulative distribution of η is reached

To conclude...

Azimuthal asymmetry in signals observed in the water-Cherenkov detector of the surface detector are combination of:

- geometrical effects from the inclination of the shower
- attenuation of the charged particles from their point of emission to the ground

From simulations, development of a model describing the amplitude of the asymmetry:

- suppression of the bias
- improvement of the resolution

No impact observed on the uncertainties in $S(1000)$ or on the angular resolution

To conclude...

Azimuthal asymmetry in signals observed in the water-Cherenkov detector of the surface detector are combination of:

- geometrical effects from the inclination of the shower
- attenuation of the charged particles from their point of emission to the ground

Amplitude of the asymmetry is a balance between electromagnetic and muonic components of the shower:

- scintillator detectors?
- muon deficit in simulations?

Trugarez !*

