

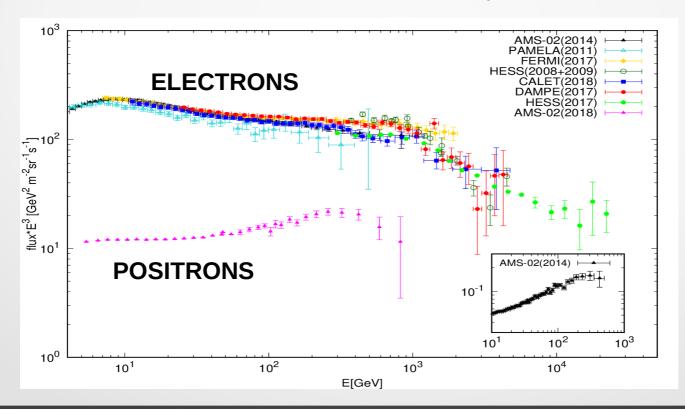
A local fading accelerator and the origin of TeV cosmic ray electrons

Sarah Recchia

S. Recchia, S. Gabici, F.A. Aharonian and J. Vink

Overview

- The detection of CR electrons up to ~ 20 TeV poses strong constraints on the possible distance and age of the possible sources
 - * t_a ~ 20 kyr, depending on energy losses
 - d ~ 100-500 pc, depending on the interstellar diffusion coefficient
- Such limitations on age and distance also poses constraints on the number of contributing sources
 - very few source likely dominate the multi-TeV electron spectrum
 - maybe one single source
- Given the drop of the positron fraction below above ~400-500 GeV, such source(s) should produce more electrons than positrons in the multi-TeV domain
- What is the nature of such source(s)?


CR electron and positron spectrum

CR electron spectrum shows:

- break at ~ 1TeV
- no visible cut-off up to ~ 20 TeV

CR positron fraction shows:

- rises between ~1-200GeV
- Saturates at ~0.15 at ~200 GeV
- Drops above ~ 400-500 GeV

Implications on CR sources

- energy losses in the multi-TeV domain:
 - synchrotron (on the interstellar magnetic field)
 - inverse Compton scattering (on the interstellar radiation field)
 - $_{\star}$ T_{loss} (20 TeV) ~ 2x10⁴ yr
- diffusion plus losses:
 - \star D(E) ~ $10^{28} \, \text{E}^{0.3}_{\text{GeV}} \, \text{cm}^2/\text{s}$
 - Maximum distance of sources ~ 100-500 pc

Few sources, maybe only one, may dominate the multi-TeV electron spectrum

Such source(s) should produce mainly electrons over positrons

Model with local electron TeVatron

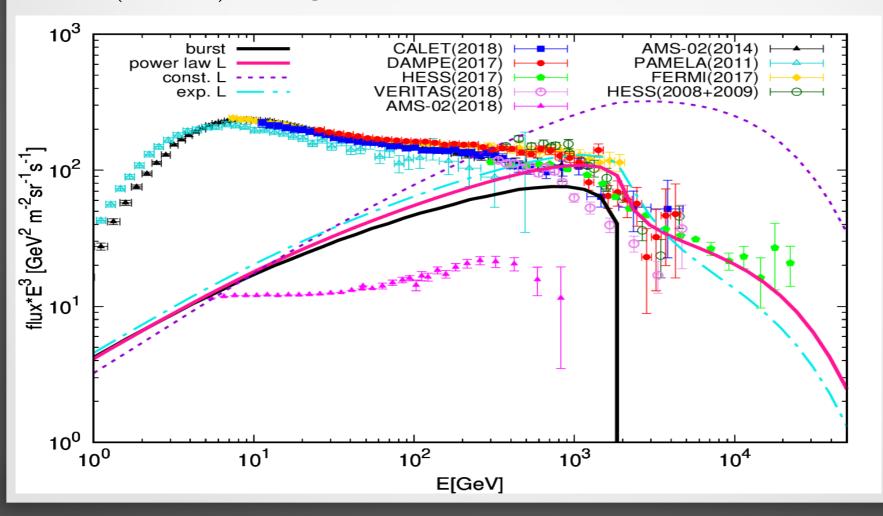
distant sources:

- continuous, stationary and homogeneous distribution in a disk, beyond ~ 500 pc from Earth
- power-law injection spectrum E-2.4
- luminosity L~10³⁹ erg/s

local source:

- power-law injection spectrum E-2.3
- time-varying electron luminosity L(t)
- burst-like, constant luminosity, fading...

$$L(t) = L_0/[1 + (t/\tau)]^2$$
 $L(t) = L_0^{-t/\tau}$

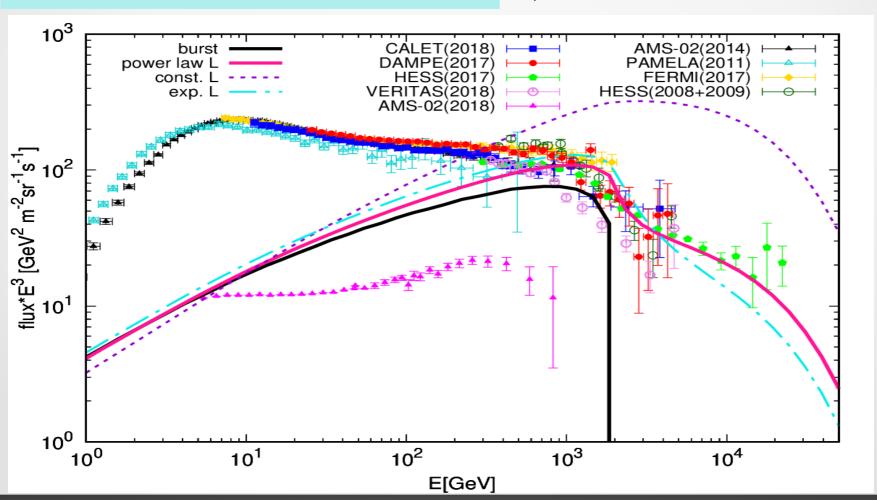

$$L(t) = L_0^{-t/\tau}$$

* τ typical fading time – scale

multi-TeV electron spectrum

1 TeV cooling break, sharp cut-off in a burst-like source

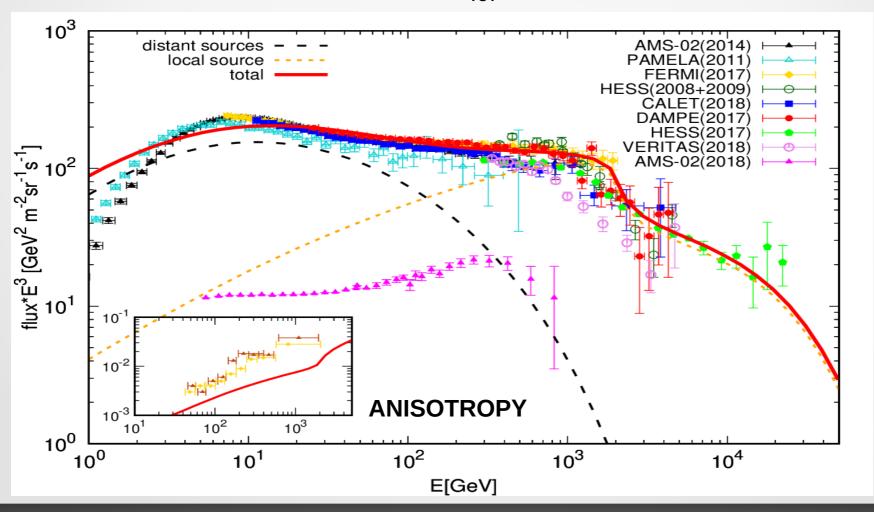
$$t_{loss}(1 \, \text{TeV}) = \text{age}$$



multi-TeV electron spectrum

fading source shows drop at $t_{loss}(1 \text{ TeV}) = \text{age}$

$$t_{loss}(1 \, \text{TeV}) = \text{age}$$


the height of the drop depends on

Fit to the data

local source:

age ~ 10^5 yr, d = 100 pc, τ /age ~ 0.08, $E_{\tau o \tau} \approx 4 \times 10^{47}$ erg

Conclusions

- A local, fading, electron TeVatron can account for the whole multi-TeV electron spectrum
 - * the ~ 1 TeV break can be interpreted as a cooling break and implies a source age of ~100kyr
 - * the spectral profile above ~ 1 TeV can be accounted for by a fading source luminosity
 - distance from Earth of ~ 100 pc for a typical interstellar diffusion coefficient
- What kind of source?
 - * should inject electrons continuously with a fading luminosity
 - * age ~ 100 kyr, fading time-scale ~ 10 kyr
 - * accelerate mostly electrons
 - SNRs? Stellar winds? ...