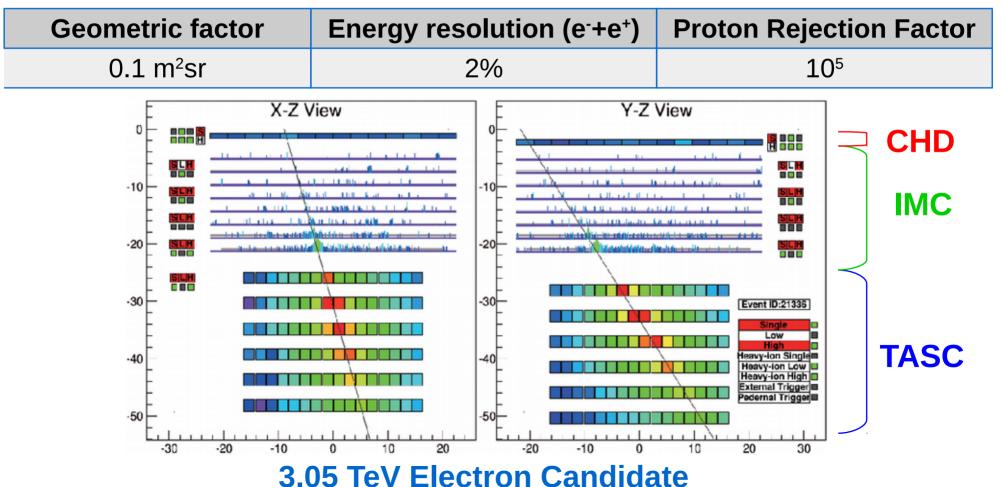


The analysis strategy for the measurement of the electron flux with CALET on the International Space Station

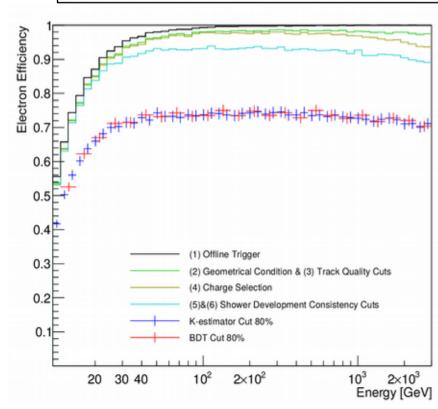

> Eugenio Berti^{1,2}, Lorenzo Pacini² and Yosui Akaike³ (1) Florence University, Italy (2) INFN Section of Florence, Italy (3) Waseda University, Japan *for the CALET collaboration*

> > ICRC 2021 June 12th-23th 2021

Scientific goal and detector overview

The primary scientific goal of the CALET experiment on the ISS is the **measurement of the electron+positron flux up to the multi-TeV region**

This is possible thanks to the excellent performances of the calorimeter:



2

Analysis Strategy (a) Selection

The electron analysis strategy is divided in two main steps:

(a) a group of selections to obtain a well reconstructed sample of electron candidates, removing contamination from events outside acceptance and particles with charge Z>1
→ Above 30 GeV, the selection efficiency is higher than 95% for electrons and smaller than 1% for protons

(1) Offline trigger confirmation \rightarrow select a flat region of discriminator efficiency (2) Geometrical condition \rightarrow select tracks inside acceptance (3) Track quality \rightarrow ensure an accurate track reconstruction (4) Charge selection \rightarrow remove contamination from He and nuclei (5) Longitudinal shower likelihood \rightarrow suppress contamination from proton (6) Lateral shower concentration \rightarrow suppress contamination from proton and events outside the detector acceptance 3

Analysis Strategy (b) Rejection

The electron analysis strategy is divided in two main steps:

(b) a proton rejection cut to further suppress the proton background → <u>The residual proton contamination</u> (<5 % for E < 1 TeV and and <20% for E > 1 TeV, [<10% for the optimized BDT analysis using 13 parameters]) is subtracted from the final measurement

Rejection by single cut (below 500 GeV) Based on the variable

$$K = \log_{10}(F_E) + \frac{1}{2}R_E$$

where: • *F_E* is the fraction of energy deposited in the last TASC layer

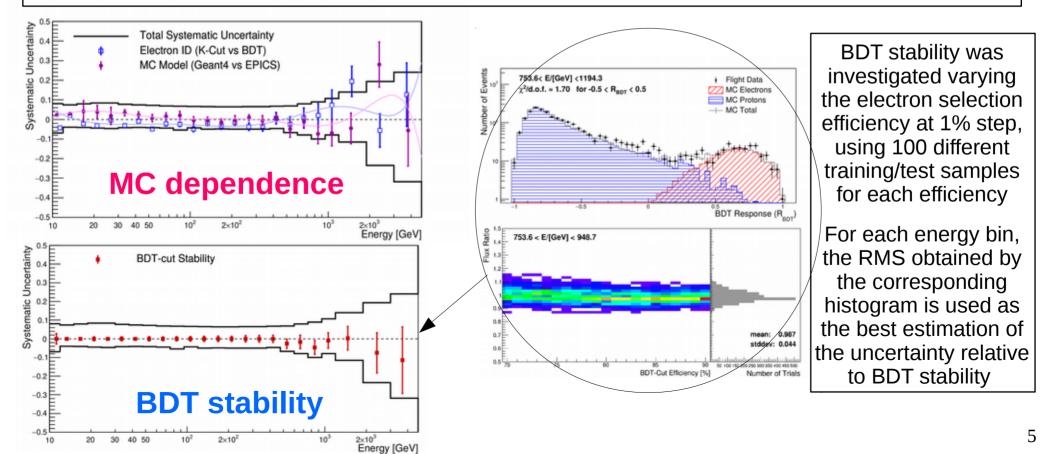
•
$$R_E = \sqrt{\frac{\sum_j \{\Delta E_j \cdot (x_j - x_c)^2\}}{\sum_j \Delta E_j}}$$

Rejection by MVA Cut (above 500 GeV) using Boosted Decision Tree

BDT estimator is built using 9 parameters, including F_{e} , R_{e} and several variables connected with the longitudinal fit in IMC and TASC.

Longitudinal Fit in IMC $\frac{dE}{dt} = e^{p_0 + p_1 t}$

 $\frac{Longitudinal Fit in TASC}{dE} = E_0 \frac{b^{(\alpha+1)}}{\Gamma(\alpha+1)} t^{\alpha} e^{-bt}$


In an optimized BDT analysis that is currently under study, we use 13 parameters and a single bin above 500 GeV (properly applying energy-dependent corrections to variables).

4

Systematic Uncertainties

Systematic uncertainties can be divided in two groups:
Normalization uncertainties, *i.e.* detector acceptance, longterm stability, radiation environment, and live time, for a total of 3.2%
Energy-dependent uncertainties, *i.e.* trigger efficiency, track

reconstruction, charge selection, MC dependence, and BDT stability

