

Parameterization of Muon Production Profiles in the Atmosphere

ICRC 2021

Stef Verpoest¹, Thomas K. Gaisser²

¹Ghent University, Belgium ²Bartol Research Institute, University of Delaware, Newark DE, USA

Introduction

Elbert formula: estimate high-energy muon multiplicity in air shower

$$\langle N_{\mu}(>E_{\mu},E_{0},A,\theta)\rangle \approx A \times \frac{0.0145 \,\text{TeV}}{E_{\mu} \cos \theta} \left(\frac{E_{0}}{A E_{\mu}}\right)^{0.757} \left(1-\frac{A E_{\mu}}{E_{0}}\right)^{5.25}$$

Limitations:

- No production depth / altitude
- No atmospheric conditions

Goal: parameterize longitudinal muon production profiles from simulation

Muon production fit formula

Muon production differential in slanth depth

$$\left\langle \frac{\mathrm{d}N}{\mathrm{d}X}(X,T,E_0,A,E_{\mu},\theta) \right\rangle =$$

 \geq

- Derivative of Gaisser-Hillas function (1)
- \times Relative probability of meson decay to muons (2)

- X slanth depth
- T atmospheric temperature
- **E**₀ primary energy
- A primary mass
- E_{μ} minimum muon energy
- heta zenith angle

Muon production fit formula (1)

$$\left\langle \frac{\mathrm{d}N}{\mathrm{d}X}(X,T,E_0,A,E_{\mu},\theta) \right\rangle = N_{max} \times \exp\left((X_{max}-X)/\lambda\right) \times \left(\frac{X_0-X}{X_0-X_{max}}\right)^{(X_{max}-X_0)/\lambda} \times \frac{X_{max}-X_0}{\lambda(X-X_0)}$$

× Relative probability of meson decay to muons

× Threshold factor from Elbert formula

- · Interpreted as the production of charged mesons
- Four free parameters: $N_{max}, X_{max}, \lambda, X_0$

Muon production fit formula (2)

$$\left\langle \frac{\mathrm{d}N}{\mathrm{d}X}(X,T,E_0,A,E_\mu,\theta) \right\rangle = N_{max} \times \exp\left((X_{max}-X)/\lambda\right) \times \left(\frac{X_0-X}{X_0-X_{max}}\right)^{(X_{max}-X_0)/\lambda} \times \frac{X_{max}-X}{\lambda(X-X_0)} \\ \times \left[0.92 \times \frac{r_\pi \lambda_\pi \epsilon_\pi}{fE_\mu \cos(\theta)X} \times \frac{1}{1 + \frac{r_\pi \lambda_\pi \epsilon_\pi}{fE_\mu \cos(\theta)X}} + 0.08 \times \frac{r_K \lambda_K \epsilon_K}{fE_\mu \cos(\theta)X} \times \frac{1}{1 + \frac{r_K \lambda_K \epsilon_K}{fE_\mu \cos(\theta)X}} \right]$$

× Threshold factor from Elbert formula

- Fraction of decay vs decay & reinteraction $\frac{1/d_{\pi}}{1/d_{\pi}+1/\lambda_{\pi}}$
- Decay length $\frac{1}{d_{\pi}} = \frac{\epsilon_{\pi}}{E_{\pi} \cos \theta X}$
- Critical energy $\epsilon_{\pi} = rac{m_{\pi}c^2}{c\tau_{\pi}}rac{RT}{Mg} pprox 115\,{
 m GeV} imes rac{T}{220\,{
 m K}}$
- Average energy from decay: $E_{\mu} \approx r_{\pi} \times E_{\pi}$
- *f*: ratio between minimum energy E_{μ} and mean energy of muons above minimum
- Charged pions & kaons: 0.92 & 0.08 from momentum fractions and branching ratios

Muon production fit formula (3)

$$\left\langle \frac{\mathrm{d}N}{\mathrm{d}X}(X,T,E_0,A,E_{\mu},\theta) \right\rangle = N_{max} \times \exp\left((X_{max}-X)/\lambda\right) \times \left(\frac{X_0-X}{X_0-X_{max}}\right)^{(X_{max}-X_0)/\lambda} \times \frac{X_{max}-X}{\lambda(X-X_0)} \\ \times \left[0.92 \times \frac{r_{\pi}\lambda_{\pi}\epsilon_{\pi}}{fE_{\mu}\cos(\theta)X} \times \frac{1}{1+\frac{r_{\pi}\lambda_{\pi}\epsilon_{\pi}}{fE_{\mu}\cos(\theta)X}} + 0.08 \times \frac{r_{K}\lambda_{K}\epsilon_{K}}{fE_{\mu}\cos(\theta)X} \times \frac{1}{1+\frac{r_{K}\lambda_{K}\epsilon_{K}}{fE_{\mu}\cos(\theta)X}} \right] \\ \times \left(1-\frac{AE_{\mu}}{E_0} \right)^{5.99}$$

- Low energy behaviour (E_0/A close to E_μ)
- Exponent fit to our simulations

- CORSIKA simulations using Sibyll 2.3c
- Extract production of muons $> E_{\mu}$ per dX
- Fit with formula to obtain $N_{max}, X_{max}, \lambda, X_0$

Parameterization

- Repeat for various primaries and thresholds E_{μ}
- Fit results depend in leading order on E_0/AE_{μ}
- Describe with*

$$N_{\max} = c_i \times A \times \left(\frac{E_0}{AE_{\mu}}\right)^{p_i}$$
$$X_{\max}, \lambda, X_0 = a_i + b_i \times \log_{10}\left(\frac{E_0}{AE_{\mu}}\right)$$

with i = 1, 2 below/above a break $E_0/AE_{\mu} = 10^q$

*actual parameters can be found in proceeding

Example:

- Muon bundle at fixed primary energy
- Relevant for surface/underground coincidences
- Numbers used relevant for IceTop & IceCube:
 - elevation 2835 m a.s.l.
 - depth \approx 700 g/cm²
 - \cdot vertical showers
 - *E*₀ = 10 PeV
 - E_{μ} = 400 GeV
 - Atmospheric data from NASA AIRS satellite

Multiplicity variations

- $\cdot\,$ Muon production profile obtained for realistic atmosphere
- Integrate for multiplicity
- Highest in (austral) summer, when atmosphere is warmest
- $\cdot\,$ Seasonal variations \sim 6% around mean

Production altitude

• Production altitude information from production depth

$$h(X_{v}) = \frac{RT}{Mg} \ln \frac{X_{0}}{X_{v}}$$

where X_0 is dept at h = 0

- Muons produced higher for heavier primaries
- Muons produced higher in summer

Size variations

· Production altitude combined with transverse momentum gives deviation at surface

$$\mathbf{r}_{T} = \frac{p_{T}}{E_{\mu}} \times \frac{h}{\cos\theta},$$

- + Estimate using $\langle p_T \rangle \approx 350 \, {\rm MeV}$
- $\langle r_T \rangle$: average of r_T weighted with production profile (geometric effect only)
- Largest muon bundle size in summer
- $\cdot\,$ Seasonal variations \sim 10% around mean

Estimation of rates of single/multiple muon events integrating over primary spectrum:

- PoS(ICRC2021)1202
- arXiv:2106.12247

The parameterization is also made available on GitHub:

 \cdot https://github.com/verpoest/muon-profile-parameterization

Note: Because the scaling with E_0/AE_μ is not perfect, it is best to optimize the parameters for a specific application

Parameterization of production profiles of high-energy muons in air showers:

- Muon production versus atmospheric depth
- Depends on atmospheric temperature
- Various applications:
 - \cdot muon multiplicity
 - muon bundle size
 - \cdot event rates
 - \cdot seasonal variations
 - ...

Thank you!