

Testing The AGN Radio And Neutrino Correlation Using The MOJAVE Catalog Abhishek Desai, Justin Vandenbroucke and Alex Pizzuto for the IceCube Collaboration

ICRC 2021

Motivation For Radio-Neutrino Correlation Studies:

- * The blazar PKS1502+106 (J1504+1029) was found to have a possible correlation with an IceCube alert (IC190730A: ATel #12967).
- * At the time of the alert, the radio observations of the FSRQ were seen reaching an all time peak flux of 4 Jy (S. Kiehlmann et al. ATel #12996) (See Below).
- * Moreover, a positive correlation will help us better understand possible neutrino production processes in AGN (as also discussed in Plavin et al. 2020 ApJ 894,101).

MOJAVE Sample: Source Distribution

- ~75% of the MOJAVE XV (Lister et al. 2018 ApJS 234, 12) source sample consists of sources with declination>0 degree.
- The dataset consists of 5321 observations of 437 AGNs in the 15 GHz band, obtained between 1996 January 19 and 2016 December 26 with the VLBA in full polarization mode.

Stacking Analysis

Time averaged analysis $F_{\nu} \propto F_R$: $(w_i = F_{Ri})$

- We make use of the average flux of each source as the weight to be used in stacking.
- As the sample size is relatively small (437) we make use of all the sources in our analysis.

Stacking Analysis

 We use the un-binned likelihood equation given by:

$$\mathscr{L} = \prod_{i} \left(\frac{n_s}{N} \mathscr{S}_i \left(\mathbf{x}, \mathbf{x}_{\mathbf{S}}; \sigma, E, \delta, \gamma \right) + \left(1 - \frac{n_s}{N} \right) \mathscr{B}_i(\delta; E) \right)$$

- * Where, for each event i,
 - * n_S : the number of associated signal neutrinos
 - x_S: the event location source location
 - * σ : reconstruction accuracy
 - * E: energy
 - * δ : declination
 - γ: spectral index

 The signal term is weighted for a stacking analysis using the average radio flux.

$$\mathcal{S}_{i} = \frac{\sum_{j} \omega_{j} \mathcal{R}_{j}(\delta_{j}, \gamma) \mathcal{S}_{i}^{j}(\mathbf{x}_{S})}{\sum_{j} \omega_{j} \mathcal{R}_{j}(\delta_{j}, \gamma)}$$

- * Where the source pdf S_i^j is for the i^{th} event with respect to the j^{th} source, and,
- * ω_j : the weight
- * $\mathscr{R}_{j}(\delta_{j}, \gamma)$: the detector weight at a source at declination of δ_{j} emitting neutrinos from a differential $E^{-\gamma}$ spectrum.

Completeness Calculation:

- Simulated source count distribution is derived using the MOJAVE XVII work. (Lister et al. 2019 ApJ 874, 43).
- * Lorentz factor and the viewing angles are allowed to vary randomly.
- Comparison of the area under the curve for the simulation (orange) and MOJAVE XV (blue) cases gives the completeness.

- * The catalog completeness is calculated to be (44.7+-11.2)%.
- * Note: Because the MOJAVE catalog is blazar dominated, the completeness shown here is also for a blazar dominated sample.

Stacking Results:

- * The contours in the above ns-gamma likelihood plot show the 1,2 and 3 sigma values assuming Wilk's theorem with 2 degrees of freedom.
- * As no significant evidence for a neutrino signal was seen, we set an upper limit on neutrino flux from these sources.

Upper Limits

- * Zhou et al. 2021 makes use of 3388 sources listed in the Radio Fundamental Catalog and a weighting of radio fluxes measured at ~8 GHz to derive an upper limit at 95% C.L. (we use 15 GHz data to derive a limit at 90% C.L.).
- Both Zhou et al. 2021 and Plavin et al. 2020a2020b do not have the same constraints as the MOJAVE sample which is dominated by Blazars.

Differential Upper Limits

 The plot shows the 90% differential upper limits derived by stacking the MOJAVE sources using the average radio flux as the weights for each energy bin.

Summary:

- We perform a time averaged stacking analysis using the MOJAVE catalog.
- We report here the upper limit results for a radioneutrino correlation analysis which focuses on a blazar dominated AGN sample.
- We are also in process of working on a time dependent analysis which makes use of the light curves observed by MOJAVE as weights for the stacking, to be presented soon.

Completeness Calculation:

- * The source count distribution is estimated using the luminosity function parameters presented in the MOJAVE XVII work. (Lister et al. 2019 ApJ 874, 43).
- * The Lorentz factor and the viewing angles are allowed to vary randomly based on the limits discussed, and for each flux value the process is repeated multiple times.
- * After calculating the area under the curve for the two cases to derive completeness, the whole process is repeated multiple times to derive the uncertainty.
- * The MOJAVE catalog completeness is calculated to be (44.7+-11.2)% .
- The orange shaded portion shows the 1 sigma uncertainty of the N>S values because of variation of Doppler factor.
- Because the MOJAVE catalog is blazar dominated, the completeness shown here is also for a blazar dominated sample.

Why AGN Became So Interesting For Neutrino Studies:

Neutrino Alert: IC-170922A (Red dashed line); AGN: TXS 0506+056

The IceCube Collaboration. Science 2018, 361

Unblinded result compared to Background distributions:

 The unblinded TS is shown as compared to the background median on the background TS distributions.

Backup Slide: Distribution of the MOJAVE source sample

Distribution of the source sample in sin(declination) taken from the MOJAVE XV catalog

Distribution of the 5321 observations for the MOJAVE XV sources

Upper Limits

- * Zhou et al. 2021 makes use of 3388 sources listed in the Radio Fundamental Catalog and a weighting of radio fluxes measured at ~8GHz to derive an upper limit at 95% C.L. (we use 15 GHz data to derive a limit at 90% C.L.).
- This completeness percentage is calculated by taking into account the parent population (AGN) distributions causing the completeness value being lower than the previous case

ICECUBE

Information from the MOJAVE XVII paper

Jet Property	Distribution	Fixed parameters	Free parameter ranges
Lorentz factor	$N(\Gamma)d\Gamma\propto\Gamma^b$	$\Gamma_{\min} = 1.25$ $\Gamma_{\max} = 50$	$-1.8 \le b \le -0.2$, step = 0.2
Luminosity function	$ \begin{split} \Phi(L,z) &\propto \Phi(L/e(z)) \\ e(z) &= (1+z)^k e^{z/\eta} \\ \Phi(L/e(z=0)) &\propto L^{\gamma} \end{split} $	$L_{\rm min} = 10^{24} \text{ W Hz}^{-1}$ $L_{\rm max} = 10^{31} \text{ W Hz}^{-1}$	$-0.65 \le \eta \le -0.25$, step = 0.05 $4.5 \le k \le 8.5$, step = 0.5 $-3.2 \le \gamma \le -2.4$, step = 0.1
Beamed luminosity	$P = L\delta^p$	$p = 2 + \alpha$	$\alpha = -0.5, 0, 0.22$
Viewing angle	$p(\theta)d\theta = \sin\theta$	$\theta_{\min} = 0^{\circ}$ $\theta_{\max} = 90^{\circ}$	•••

* MOJAVE XVII: Link

* Above table shows the jet properties of the AGN sample used in the analysis. These are used to compute the completeness of the MOJAVE sample.

Redshift Distribution

Relevant Literature talking about this correlation

- Using Catalog and public IceCube alerts
 - * Plavin, et al., 2020a
 - Plavin, et al., 2020b
 - * <u>OVRO 2020</u>
 - * Giommi,et al.,2020
 - * Zhou et al. 2021
- Some (of the many) interesting papers talking about this correlation while not using any large (radio) source population:
 - * Kun, et al., 2020 (Neutrino emission during Gamma ray suppressed state in AGN)
 - * Markus Boettcher 2019
 - * Blandford, Meier and Readhead 2018
 - * Murase, Inoue and Dermer 2014
 - * Mannheim, Stanev and Biermann 1992

Comparison With Individual Potential Neutrino Sources

- * Possible coinciding IceCube alerts and AGN source directions
 - * TXS0506+056 (<u>IC170922A</u>) Mojave avg rd flux: 593 mJy
 - 1WHSP J104516.2+275133/NVSS J104516+275136 (IC190704A): Not Present. (Not in any of the catalogs MOJAVE is made from)
 - * PKS1502+106 (<u>IC190730A</u>) MOJAVE avg rd flux: 1423 mJy
 - NVSS J151100+054916 (<u>IC191119A</u>) Not Present. (Not in any of the catalogs MOJAVE is made from)
 - 3HSP J095507.9+355101 (<u>IC200107A</u>): Not Present. (Not in any of the catalogs MOJAVE is made from)
 - * TXS 1100+122 (<u>IC200109A</u>) (Not in any of the catalogs MOJAVE is made from)
- * 10 yr PS analysis (Most significant sources)
 - * NGC1068 Not present in MOJAVE because no detection at 15GHz (link)
 - * PKS 1424+240 Mojave avg rd flux: 275 mJy
 - * GB6 J1542+6129 Mojave avg rd flux: 152 mJy

Back-of-the-envelope calculation for completeness :

- Say there are nsim=16pi number of sources in the sky while a catalog sees n_catalog=6pi. And say the coverage of the catalog is 50% of the sky. (Notice it is not equal to nsim/2 so there is an additional factor apart from sky coverage effecting completeness)
- Based on the calculation I did earlier for the N>S value, if the whole catalog is depicted by 1 flux bin, the N>S (str-1) will be n_catalog/4pi = 6pi/4pi = 3/2
- The N>S (str-1) for the simulated / complete sample will be nsim / 4pi = 16pi / 4pi = 4
- The completeness will then be N>S_catalog/N>S_sim giving (3/2)/4=37.5% complete.
- If this is true then n_catalog/completeness should give the total number of sources in the sky (nsim)—-> 6pi/0.375 = 16 pi

So both the sky coverage and flux coverage is included.

Comparison With Other Stacking Analysis

