Extragalactic magnetic fields and directional correlations of UHECRs with local galaxies and neutrinos

<u>Arjen van Vliet</u>, Andrea Palladino, Walter Winter, Andrew Taylor and Anna Franckowiak ICRC 2021, Berlin, Germany; Contribution 671

A. Palladino, **AvV**, W. Winter and A. Franckowiak, MNRAS 494 (2020) 4255 **AvV**, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732, submitted to MNRAS

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

European Research Council Established by the European Commission Supporting top researchers from anywhere in the world

European Commission

Horizon 2020 European Union funding for Research & Innovation

Measurements of UHECRs and astrophysical neutrinos

Looking for correlations between UHECRs and neutrinos

- Searches by IceCube + ANTARES + Auger + TA
- No significant correlations found yet

Search for correlations of high-energy neutrinos and ultrahigh- energy cosmic rays

ANTARES and IceCube and Telescope Array Collaborations (Lisa Schumacher (Aachen, Tech. Hochsch.) for the collaboration)

May 24, 2019 - 4 pages

EPJ Web Conf. 207 (2019) 02010 (2019) DOI: <u>10.1051/epjconf/201920702010</u> Conference: <u>C18-10-02.1</u> (EPJ Web Conf., 207 (2019) 02010) <u>Proceedings</u> e-Print: <u>arXiv:1905.10111</u> [astro-ph.HE] I <u>PDF</u>

Experiment: ANTARES, ICECUBE, AUGER, TELESCOPE-ARRAY

Search for a correlation between the UHECRs measured by the Pierre Auger Observatory and the Telescope Array and the neutrino candidate events from IceCube and ANTARES

ANTARES and IceCube and Pierre Auger and Telescope Array Collaborations (J. Aublin (APC, Paris) et al.) Show all 14 authors

May 10, 2019 - 5 pages

EPJ Web Conf. 210 (2019) 03003 (2019) DOI: <u>10.1051/epjconf/201921003003</u> Conference: <u>C18-10-08.1</u> <u>Proceedings</u> e-Print: <u>arXiv:1905.03997</u> [astro-ph.HE] I <u>PDF</u> Experiment: ANTARES, ICECUBE, AUGER, TELESCOPE-ARRAY

> Search for correlations between the arrival directions of IceCube neutrino events and ultrahighenergy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

> > IceCube and Pierre Auger and Telescope Array Collaborations (M.G. Aartsen (Adelaide U.) et al.) Show all 870 authors

Nov 30, 2015 - 40 pages

JCAP 1601 (2016) 037 (2016-01-20)

DOI: 10.1088/1475-7516/2016/01/037 FERMILAB-PUB-15-520-AD-AE-CD-TD e-Print: arXiv:1511.09408 [astro-ph.HE] | PDF Experiment: AUGER, IceCube, TELESCOPE-ARRAY

Correlations between UHECRs and source positions

Pierre Auger Collaboration, Astrophys. J. Lett. 853 (2018) 2

Pierre Auger Collaboration, PoS ICRC2019 206

- Indications of anisotropy found by Auger
- Largest significance for correlations with starburst/starforming galaxies
- Most important sources:
 - NGC 253, NGC 4945, Circinus and M83
 - 4 nearest sources in the catalogue within the field of view of Auger

Catalog	E _{th}	θ	f _{aniso}	TS	Post-trial	
Starburst	38 EeV	$15^{+5}_{-4}^{\circ}$	11^{+5}_{-4} %	29.5	4.5 σ	
y-AGNs	39 EeV	14_{-4}^{+60}	6 ⁺⁴ %	17.8	3.1 <i>σ</i>	
Swift-Bat	38 EeV	15^{+60}_{-4}	8+4%	22.2	3.7 σ	
2MRS	40 EeV	15^{+7}_{-4} °	$19^{+10}_{-7}\%$	22.0	3.7 σ	

ICRC 2019 presentation by L. Caccianiga

DESY. AvV - EGMFs and directional correlations of UHECRs with local galaxies and neutrinos

UHECR

UHECR propagation:

- Acceleration at sources
- Deflections by magnetic fields
- Interactions with CMB and EBL
- Nuclear decay
- Secondary particles
- Detection at Earth

CR/Propa

See <u>crpropa.desy.de</u> and contribution 289 to this conference. R. Alves Batista, A. Dundovic, M. Erdmann, K.-H. Kampert, D. Kümpel, G. Müller, G. Sigl, **AvV**, D. Walz and T. Winchen, JCAP 1605 (2016) 038

EGME

CMB

EBL

SMA

Our method

A. Palladino, **AvV**, W. Winter and A. Franckowiak, MNRAS 494 (2020) 4255 **AvV**, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732, submitted to MNRAS

- Simulate UHECR sky maps for specific EGMF and GMF setups and local source densities ρ_0
- *v* correlations: add neutrinos from the same sources. Check for significant correlations with these neutrinos.
- Local galaxies correlations: Check if the UHECR sky maps give θ and f_{aniso} values compatible with the analysis of Auger

Catalog	E _{th}	θ	f _{aniso}	TS	Post-trial
Starburst	38 EeV	$15^{+5}_{-4}^{\circ}$	11^{+5}_{-4} %	29.5	4.5 σ
y-AGNs	39 EeV	14^{+60}_{-4}	$6^{+4}_{-3}\%$	17.8	3.1 σ
Swift-Bat	38 EeV	$15_{-4}^{+6\circ}$	$8^{+4}_{-3}\%$	22.2	3 .7 σ
2MRS	40 EeV	15^{+7}_{-4}	19^{+10}_{-7} %	22.0	3.7 σ

DESY. AvV - EGMFs and directional correlations of UHECRs with local galaxies and neutrinos

•

•

•

•

Neutrino multiplets

- No neutrino multiplets (2 or more neutrinos from the same source) in the HE through-going muon sample of IceCube
- Use the same method as for neutrino-UHECR correlation to determine the probability to observer neutrino multiplets
- Influenced by
 - Source evolution with redshift
 - Density of the sources ρ_0
 - Neutrino luminosity
- Strongly constrains local density

Local galaxy correlations: Constraints on extragalactic magnetic fields and local source density

- Galactic and extragalactic magnetic fields (GMF and EGMF) deflect UHECRs
- θ: optimal angular width around sources, measure for the deflection of UHECRs from those sources
- A larger local source density means more contributing sources and a larger isotropic background
- f_{aniso}: fraction of UHECRs from the catalogue sources, directly related to the source density
- Auger results can be used to constrain magnetic fields and local source density

Catalog	E _{th}	θ	f _{aniso}	TS	Post-trial
Starburst	38 EeV	$15^{+5}_{-4}^{\circ}$	11^{+5}_{-4} %	29.5	4.5 σ
γ-AGNs	39 EeV	14^{+60}_{-4}	$6^{+4}_{-3}\%$	17.8	3.1 σ
Swift-Bat	38 EeV	15^{+60}_{-4}	$8^{+4}_{-3}\%$	22.2	3.7 σ
2MRS	40 EeV	15 ⁺⁷ °	19^{+10}_{-7} %	22.0	3.7 σ

Example sky maps for the correlations with local galaxies

v correlations results as a function of the source density

A. Palladino, AvV, W. Winter and A. Franckowiak, MNRAS 494 (2020) 4255

- Neutrino flux
- Neutrino multiplets: 90% region for presence of at least one neutrino multiplet in IceCube through-going muon flux
- UHECR-neutrino correlations: Region for at least 50% chance of observing 5σ excess in neutrino-UHECR correlations
 - assuming the IceCube TGM flux is reproduced

DESY. AvV - EGMFs and directional correlations of UHECRs with local galaxies and neutrinos

Results for different source evolutions; steady vs. transient

UHECR-*v* **correlations**, **conclusions**

- Expected neutrino-UHECR correlations limited by nonobservation of neutrino multiplets
- Best chance of finding neutrino-UHECR correlations for sources with negative source evolution and ρ_0 <10 Gpc⁻³
- If IceCube does not observe any neutrino multiplets in the next few years, it is very unlikely that a correlation between neutrinos and UHECRs will be found

Local galaxy correlations: preliminary results

Local galaxy correlations: conclusions

AvV, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732, submitted to MNRAS

- Main assumption: overdensities in UHECR sky maps by Auger are produced by local star-forming galaxies
- If true, and the background UHECRs come from the same source class, a 5σ lower limit on the EGMF is obtained: *B* > 0.64 nG Mpc^{1/2}
- Allowing for the full range of ρ_0 :
 - Anti-correlation between source density and EGMF: isotropization by strong magnetic fields or large source densities
 - Too strong isotropization destroys observed correlations:
 - 90% C.L. upper limits: B < 24 nG Mpc^{1/2}; ρ₀ < 0.09 Mpc⁻³

DESY. AvV - EGMFs and directional correlations of UHECRs with local galaxies and neutrinos

Summary

A. Palladino, **AvV**, W. Winter and A. Franckowiak, MNRAS 494 (2020) 4255 **AvV**, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732, submitted to MNRAS

- We investigated the expectations for arrival-direction correlations between UHECRs and neutrino arrivaldirections or local star-forming galaxies
- Considering:
 - deflections in EGMFs and the GMF
 - the source density
 - interactions with background photon fields
 - UHECR spectrum and composition measurements by Auger
 - source evolution
- Arrival-direction correlations between HE neutrinos and UHECRs not expected, even in the most optimal scenarios
- Arrival-direction correlations of UHECRs with star-forming galaxies suggest the presence of strong local extragalactic magnetic fields (B > 0.64 nG Mpc^{1/2}) or very numerous UHECR sources ($\rho_0 > 3 \times 10^{-3}$ Mpc⁻³)

Contact

DESY. Deutsches	
Elektronen-Synchrotron	

www.desy.de

Arjen van Vliet THAT – NEUCOS arjen.van.vliet@desy.de +49 33762 7-7381

Backup slides

UHECRs and astrophysical neutrinos

- Ultra-high-energy cosmic rays (UHECRs):
 - Nuclei from protons to iron with $E > 10^{18} \text{ eV}$ (= $10^9 \text{ GeV} = 1 \text{ EeV}$)
- Main experiments:
 - Pierre Auger Observatory in Argentina
 - Telescope Array in the US
- No identified sources yet
- High-energy astrophysical neutrinos ($E > 10^{14} \text{ eV}$), produced by:
 - Cosmic-ray interactions in the sources (source neutrinos)
 - Cosmic-ray interactions when traveling through the Universe (cosmogenic neutrinos)
- Main experiment: IceCube at the South Pole
- Possible first identified sources:
 - Active Galactic Nucleus (AGN) TXS 0506+056 (IceCube, Science 361 (2018) 147)
 - Tidal Disruption Event (TDE) AT2019dsg (R. Stein et al., Nature Astron. 5 (2021) 510)

UHECR sources also produce high-energy neutrinos

- Neutrinos produced in
 - Photopion production
 - pp interactions
 - β-decay

$${}^{\mathrm{A}}_{Z}\mathrm{N} \rightarrow {}^{\mathrm{A}}_{Z^{\pm 1}}\mathrm{N}' + e^{\pm} + \nu_{e} / \overline{\nu}_{e}$$

 Correlation between UHECRs and HE neutrinos?

Combined fit of UHECR spectrum and composition

- UHECR spectrum and composition assumptions at the sources from combined fits to UHECR spectrum and composition measurements of Auger
- Continuous distribution of identical sources
- Spectrum at the sources:

Power law with rigidity-dependent cut-off $\frac{\mathrm{d}N}{\mathrm{d}E} \propto E^{-\alpha} \exp(-E / ZR_{\max})$

- α < 1.3, hard injection spectrum
- $R_{\text{max}} = E^{i}_{\text{max}}/Z < 7 \text{ EV}$, low max. rigidity
- Composition at the sources:

Intermediate to heavy (Z > 5)

See also: Taylor *et al.* (2015), Auger (2017), Romero-Wolf and Ave (2018), Alves-Batista *et al.* (2019), etc.

DESY. AvV - EGMFs and directional correlations of UHECRs with local galaxies and neutrinos

Source evolution with redshift

- Test 3 different scenarios
- Negative evolution:
 - Low-luminosity BL Lacs
 - TDEs
- Flat evolution
- Star Formation Rate evolution:
 - Normal galaxies
 - Starburst galaxies
 - GRBs

Adiabatic energy losses of neutrinos

- Test 3 different scenarios
- Negative evolution:
 - Low-luminosity BL Lacs
 - TDEs
- Flat evolution
- Star Formation Rate evolution:
 - Normal galaxies
 - Starburst galaxies
 - GRBs

Energy losses of UHECRs

A. Palladino, AvV, W. Winter and A. Franckowiak, MNRAS 494 (2020) 4255

- Simulation with CRPropa, including all relevant interactions
- For *E*_{CR}>10^{18.5} eV
- For scenarios that fit UHECR spectrum and composition of Auger

ho(z)	γ	$R_{\rm max}/{ m V}$	$f_{ m P}$	$f_{ m He}$	$f_{ m N}$	$f_{ m Si}$
Neg.	1.42	$10^{18.85}$	0.07	0.34	0.53	0.06
Flat	-1.0	$10^{18.2}$	0.6726	0.3135	0.0133	0.0006
SFR	-1.3	$10^{18.2}$	0.1628	0.8046	0.0309	0.0018

Auger, JCAP 04 (2017) 038 R. Alves Batista *et al.*, JCAP 01 (2019) 002

Deflections in extragalactic magnetic fields

- Simulation with CRPropa, including all relevant interactions
- For *E*_{CR}>10^{18.5} eV
- For scenarios that fit UHECR spectrum and composition of Auger
- In the weakest EGMF model of Hackstein *et al*. 2018

Deflections in the Galactic magnetic field

- GMF model: Jansson and Farrar '12
- Deflection parameterised as function of rigidity in Farrar and Sutherland '19
- Combined with rigidity distribution obtained from simulation with CRPropa

Calculation of expected correlations with neutrinos

- Monte Carlo simulation following:
 - i. create source list for specific source density ρ_0 randomly, distributed isotropically in the sky, distances following source evolutions with redshift
 - ii. assign **probabilities to observe a neutrino** from the source to each source
 - iii. assign probabilities to observe a cosmic ray from the source to each source
 - iv. randomly extract **36 observed neutrinos** from source list (through-going muon sample from IceCube '17)
 - v. randomly extract **135k observed cosmic rays** from source list (roughly number of cosmic rays measured by Auger + TA with *E*>10^{18.5} eV), with deflections following deflection distributions obtained from simulations with CRPropa
 - vi. count number of 'signal' cosmic rays within a certain angular distance from the neutrino positions
 - vii. determine expected number of 'background' cosmic rays assuming a purely isotropic distribution
 - viii. determine optimal angular window with parameter scan
 - ix. determine **significance** as number of σ , $N\sigma \ge 5$ cases are considered to be significant
 - **x.** repeat 10³ times for each combination of ρ_0 and source evolution
 - xi. determine which fraction of maps give a significant expected correlation

Pure-proton scenario

- Excluded by UHECR composition measurements, but instructive as most optimistic case for UHECR-neutrino correlations
- Even in this case, when the GMF is included, no UHECR-neutrino correlations are expected

UHECRs with *E* > 50 EeV

- Higher energy threshold for UHECRs:
 - Less deflections
 - But also: less events and smaller source distances
- In this case even fewer UHECR-neutrino correlations are expected

Correlations with local galaxies: The analysis performed by

Auger Pierre Auger Collaboration, Astrophys. J. Lett. 853 (2018) 2

- Catalogue of 32 nearby star-forming galaxies
- Probability density maps, 2 components:
 - Isotropic component (equal probability everywhere)
 - Anisotropic component from the star-forming galaxies
- Anisotropic component:
 - Fisher distribution centred on the source coordinates (width θ)
 - Source flux proportional to radio emission + attenuation factor from UHECR energy losses
- Ratio between isotropic and anisotropic component: f_{aniso}
- Maximum-likelihood analysis:
 - Location of UHECR events × probability density map
 - Compared with isotropic probability density map

Pierre Auger Collaboration, PoS ICRC2019 206

Starburst galaxies - E > 39 EeV

Source catalog

- Simulate UHECR sky maps for specific EGMF and GMF setups and local source densities ρ_0
- Check if these sky maps give θ and f_{aniso} values compatible with what Auger found
- Focus on 4 most important sources
- UHECR source spectra and composition from fits to spectrum and composition of Auger
- Simulate deflections from catalogue sources in EGMF
 - random Kolmogorov fields; $0.1 < B_{RMS} < 10 \text{ nG}$, $0.2 < I_{coh} < 10 \text{ Mpc}$; $B = B_{RMS} \times \sqrt{I_{coh}}$
- Add deflections from GMF, JF12 model
- Combine catalogue sources with a diffuse contribution

UHECR spectrum and composition

AvV, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732, submitted to MNRAS

- Simulate UHECR sky maps for specific EGMF and GMF setups and local source densities ρ_0
- Check if these sky maps give θ and f_{aniso} values compatible with what Auger found
- Focus on 4 most important sources
- UHECR source spectra and composition from fits to spectrum and composition of Auger
- Simulate deflections from catalogue sources in EGMF
 - random Kolmogorov fields; $0.1 < B_{RMS} < 10 nG$, $0.2 < I_{coh} < 10 Mpc$; $B = B_{RMS} \times \sqrt{I_{coh}}$
- Add deflections from GMF, JF12 model
- Combine catalogue sources with a diffuse contribution

DESY. AvV - EGMFs and directional correlations of UHECRs with local galaxies and neutrinos

Deflections in magnetic fields

- Simulate UHECR sky maps for specific EGMF and GMF setups and local source densities ρ_0
- Check if these sky maps give θ and f_{aniso} values compatible with what Auger found
- Focus on 4 most important sources
- UHECR source spectra and composition from fits to spectrum and composition of Auger
- Simulate deflections from catalogue sources in EGMF
 - random Kolmogorov fields; $0.1 < B_{RMS} < 10 nG$, $0.2 < I_{coh} < 10 Mpc$; $B = B_{RMS} \times \sqrt{I_{coh}}$
- Add deflections from GMF, JF12 model
- Combine catalogue sources with a diffuse contribution

Isotropic background

- Simulate UHECR sky maps for specific EGMF and GMF setups and local source densities ρ_0
- Check if these sky maps give θ and f_{aniso} values compatible with what Auger found
- Focus on 4 most important sources
- UHECR source spectra and composition from fits to spectrum and composition of Auger
- Simulate deflections from catalogue sources in EGMF
 - random Kolmogorov fields; $0.1 < B_{RMS} < 10 nG$, $0.2 < I_{coh} < 10 Mpc$; $B = B_{RMS} \times \sqrt{I_{coh}}$
- Add deflections from GMF, JF12 model
- Combine catalogue sources with a diffuse contribution

Compare with Auger results

- For each simulated sky map we produce with our method we determine the optimal angular window θ_{xs} and maximum excess f_{xs} of UHECRs
- Compare with results of Auger analysis
- Scan over B and ρ_0
- 3 different scenarios:
 - EGMF only
 - EGMF + full GMF
 - EGMF + regular GMF

Pure-proton scenario

- Extreme scenario with minimized deflections
- Requires very large local density ρ_0
- Not possible to reproduce Auger results for a local density of star-forming galaxies, for the values of B we considered

EGMF limits

- Upper limits on EGMF strength from Faraday rotation, CMB anisotropy, Zeeman splitting
- Lower limits on EGMF from simultaneous GeV-TeV observations of blazars
- Our result: If overdensities in UHECR sky maps by Auger are produced by local star-forming galaxies, and the background UHECRs come from the same source class:

B > 0.64 nG Mpc^{1/2}

 However, this is for the EGMF between local galaxies (<5 Mpc) and the Milky Way, not necessarily comparable with general limits on EGMFs in intergalactic voids

