

Joint Experiment Missions-Extreme Universe Space Observatory

An overview of the JEM-EUSO program and results

M. Bertaina – Univ. & INFN Torino for the JEM-EUSO Collaboration ICRC 2021

N.25 JEM-EUSO Program Related Contributions @ ICRC2021

JEM-EUSO:

1 - M.Bertaina: An overview of the JEM-EUSO program and results – 389 - 15/7 @ 18:00

EUSO-TA:

2 – Z. Plebaniak: Study of the calibration method using the stars measured by the EUSO-TA telescope – 841 – 16/7 @ 18:00

EUSO-SPB2:

3 – J. Eser: Science and mission status of EUSO-SPB2 – 235 – 15/7 @ 18:00

4 - M. Bagheri: Overview of Cherenkov Telescope on board EUSO-SPB2 for the detection of ultra-high energy neutrinos – 1091 - 14/7 @ 18:00

- 5 G. Osteria: The Fluorescence telescope on board EUSO-SPB2 for the detection of ultra-high energy cosmic rays 403 15/7 @ 18:00
- 6 G. Filippatos: Expected performance of the EUSO-SPB2 Fluorescence telescope 330 16/7 @ 18:00
- 7 T. Paul: Model independent search for macroscopic dark matter with EUSO-SPB2 490 16/7 @ 18:00
- 8 R. Diesing: UCIRC2: EUSO-SPB2's infrared cloud monitor 489 16/7 @ 18:00
- 9 V. Kungel: EUSO-SPB2 telescope optics and testing 867 21/07 @ 12:00

TUS:

- 10 P. Klimov: Main results of the TUS experiment on board the Lomonosov satellite 598 15/7 @ 18:00
- 11 F. Fenu: Estimation of the exposure of the TUS space based cosmic ray observatory 752 16/7 @ 18:00

Mini-EUSO:

- 12 M. Casolino: Mini-EUSO on board the International Space Station: launch and first results 886 15/7 @ 18:00
- 13 L. Piotrowski: Towards observation of nuclearites in Mini-EUSO 1181 13/07 @ 18:00
- 14 K. Shinozaki: Measurement of UV light emission of nighttime Earth by Mini-EUSO for space-based UHECR observat. 1165 16/7 @ 18:00
- 15 F. Fenu: Simulation studies for the Mini-EUSO detector 757 16/7 @ 18:00
- 16 M.Bertaina: The EUSO@TurLab project in view of Mini-EUSO and EUSO-SPB2 missions 614 16/7 @ 18:00
- 17 A. Golzio: A study on UV emission from clouds with Mini-EUSO 417 19/7 @ 18:00
- 18 L. Marcelli: Observation of Transient Luminous Events with the Mini-EUSO telescope on board the ISS 971 19/7 @ 18:00
- 19 G. Cambie': Integration and qualification of the Mini-EUSO telescope on board the ISS 1001 21/7 @ 12:00
- 20 M. Battisti: Overview of the Mini-EUSO µs trigger logic performance 411 21/7 @ 12:00

K-EUSO:

21 - F. Fenu: A performance study of K-EUSO space based observatory – 754 - 16/7 @ 18:00

POEMMA:

- 22 A. Olinto: The roadmap to the POEMMA mission:- 863 13/7 @ 12:00
- 23 T. Venters: Astrophysical implications of v ToO observations with space-based and suborbital Cher. detectors 1337 16/7 @ 18:00
- 24 C. Guepin: Probing the properties of SHDM annihilating or decaying into ν with UHE ν experiments 1033 16/7 @ 18:00
- 25 J. Krizmanic: nuSpaceSim: A comprehensive simulation for modeling of optical and radio signals from EAS induced by ν 14/7 @ 18:00

JEM-EUSO

International collaboration

• 17 countries, 350+ researchers

- Science Evaluated positively by ESA, NASA, Roscosmos and national agencies
- Funding for detectors and precursors ongoing in all countries

The origin of UHECRs still requires an answer.... A significant increase in exposure is needed

Space offers the following opportunites:

a) Complementarity to ground-based observation

b) Potential 10x annual exposure vs ground-based observatory

c) Full sky coverage

JEM-EUSO Observation Principle

From the JEM-EUSO Misson → to the JEM-EUSO Program 2013 - 2030+ 2006 - 2013 2013 - 2015 JEM-EUSC Experimental

ACCOMPLISHED MISSIONS (2013 - 2021) Stratospheric Balloons

Ground Segme

Vol. 40 (2015)

and Method

Eluoresce

- EUSO SPB2 (2023)
- Mini-EUSO (2019)
- EUSO-SPB1 (2017)
- 103 (2010-17)
- TUS (2016-17)

EUSO-TA (2013-)

EUSO-Balloon (2014)

EUSO-TA, Balloons & Mini-EUSO

JEM-EUSO Coll. Astroparticle Physics Vol. 102 (2018) 98

EUSO Balloon (2014)

August 2014 Timmins, Canada

1 night flight @ 38 km a.s.l. data: 256,000 events

JEM-EUSO Coll.: Astroparticle Physics Vol. 111 (2019) 54 J. of Instrumentation Vol. 13 (2018) 05023

EUSO-SPB1 (2017)

<u>Main improvements:</u> - Upgraded electronics: SPACIROC 3 - Complete autonomous scheme with trigger - Solar panels for long duration flight - Optics performance + stability

0 10¹¹ 12

10¹⁹

Energy [eV]

10¹⁸

EUSO-SPB2 Design & Expected Performance

Telescopes	2	1 Fluorescence (FT)	1 Cherenkov (CT)
Energy Threshold		~5 EeV	~50 PeV
Sensor Type		MAPMT (Hamamatsu)	SiPM Hamamatsu (S14521-6050CN)
Wavelength Sensitivity		UV 300-420 nm (BG3 filter x QE)	no filter (~300-~900 nm)
Time Bin		1000 ns/bin	10 ns x 512 bins 12 bit
Pointing (zenith angle)		nadir 📃 🗖	Limb +/- 10 📃
FOV (instrumented)		3x(11x11) deg	6.4x12.8 deg
Number of Pixels		3x2304=6912 (3 48x48 PDMs)	16x32=512 (16 Vert x 32 Horz)
Pixel FOV (& size)		0.2x0.2 deg (2.8x2.8 mm)	0.4x0.4 deg (6.25 x 6.25mm)
Optics (modified Schmidt)	Spherical Mirror Glass, ROC 1659.8 mm	6 segments common focus + camera corrector/filter	4 segments bifocal separation 2 pixels horizonta
Entrance Pupil	1 m diameter	PPMA corrector plate	PPMA corrector plate

Cherenkov Telescope

TUS (2016-2017) Tracking Ultraviolet Setup

Mass	60 kg		
Power	65 W		
FOV	±4,5 degree		
Channels	16 modules of 16 PMTs		
Pixel size	10 mrad (5×5 km)		
Mirror area	$\sim 2 \text{ m}^2$		
Duty cycle	30%		

Estimation of TUS Exposure for UHECRs

Current estimation of geometric exposure @ $E > 10^{21} eV$: ~1550 km² sr yr

Fenu #572

Using Merra-2 satellite data to associate cloud presence and compute exposure.

Mini-EUSO (2019 -)

Casolino #886

Shinozaki #1165

FoV: <u>+</u> 22 deg. (9 times TUS)

2 fresnel lenses of 25 cm diameter

Near Infrared Camera

Visible Camera

Examples of events' zoo detected by Mini-EUSO

(> 40 sessions, > 40h downloaded data)

DATA with self trigger: D1 : 2.5 µs res. (128 L1GTUs) D2: 320 µs res. (128 L2GTUs) D3: 40.96 ms res. (full movie)

Marcelli #971

Piotrowski #1181 meteors

UV intensity on oceans x2 EUSO-Balloon on forests (direct airglow in Mini-EUSO) Clouds: x2 – x4 (like EUSO-Ball.)

Battisti #411

Artificial sources

K-EUSO (2023+)

- Scientific objectives:
 UHECR fluorescent radiation measurements from space
- Placement:

Fresnel lens system is much simpler from deployment point of view

19

Fenu #754

Performance Analysis

Olinto #863

POEMMA DESIGN BASED ON: OWL AND JEM-EUSO STUDIES, EUSO BALLOON EXPERIENCE, & CHANT CONCEPT + LEGACY IN FLUORESCENCE FROM GROUND

bitina

SIGNIFICANT INCREASE IN EXPOSURE, GOOD ENERGY, ANGULAR, AND SHOWER MAXIMUM RESOLUTIONS UNIFORM SKY COVERAGE TO GUARANTEE THE DISCOVERY OF UHECR SOURCES JCAP06 (2021) 007 SPECTRUM, COMPOSITION, ANISOTROPY E>50 EeV

25

20

10

5

15 ₹

TA ICRC17 POEMMA Nadir 5vr North sr⁻¹ yr⁻¹) POEMMA Limb 5yr North / (eV² km⁻¹ ~ Auger ICRC17 ΰш POEMMA Nadir 5vr South POEMMA Limb 5yr South 20.2 20.4 20.6 19.6 19.8 20 20.8 21 192 194 lg(E/eV)

v_{τ} Exposure for ToO Observations

1	Long Bursts							
Ĩ		No. of ν 's at	No. of ν 's at	Largest Distance for				
	Source Class	GC	3 Mpc	1.0 ν per event	Model Reference			
t	TDEs	1.4×10^{5}	0.9	3 Mpc	Dai and Fang [18] average			
1	TDEs	6.8×10^{5}	4.7	7 Mpc	Dai and Fang [18] bright			
Ī					Lunardini and Winter [19]			
					$M_{\rm SMBH} = 5 \times 10^6 M_{\odot}$			
ļ	TDEs	2.7×10^{8}	1.7×10^{3}	128 Mpc	Lumi Scaling Model			
					Lunardini and Winter [19]			
ļ	TDEs	7.7×10^{-7}	489	69 Mpc	Base Scenario			
					RFGBW [20] – FSRQ			
	Disease Plasses	NAA	NAA	17 36	proton-dominated advective escap			
-	Biazar Flares	NA*	NA*	47 Mpc	model			
	Shock (ISM)	1.2×10^{5}	0.9	2 Mas	Munooo [16]			
ł	ICRB Reported	1.6 × 10	0.0	5 Mpc	biurase [10]			
	Shock (wind)	2.5×10^{7}	174	41 Mpc	Murase [16]			
ł					Kotera and Silk [21] (rescaled			
	BBH merger	2.8×10^7	195	43 Mpc	Low Fluence			
t					Kotera and Silk [21] (rescaled			
	BBH merger	2.9×10^8	$2.0 imes 10^{3}$	137 Mpc	High Fluence			
Ī	BNS merger	4.3×10^{6}	30	16 Mpc	Fang and Metzger 22			
I	BWD merger	25	0	38 kpc	XMMD [23]			
- [Newly-born							
	Crab-like pulsars							
ļ	(p)	190	0	109 kpc	Fang [24]			
	Newly-born							
ļ	magnetars (p)	2.5×10^{4}	0.2	1 Mpc	Fang [24]			
	Newly-born	F 0			T (01)			
ļ	magnetars (Fe)	5.0×10^{4}	0.3	z Mpc	Fang [24]			
	Short Bursts							
ſ		No. of ν 's at	No. of ν 's at	Largest Distance for				
	Source Class	GC	3 Mpc	1.0ν per event	Model Reference			
Ī	sGRB Extended							

 1.1×10^8

800

Not applicable due to a lack of known blazars within 100 M

CONCLUSIONS

• The JEM-EUSO program is an essential element of the roadmap of the UHE Community

- Prototypes and Models of the major elements (Lenses, PDM, DP Unit) have been produced and are being tested to increase the Technical Readiness Levels.
- The first pathfinders (EUSO-TA and EUSO-Balloon) are providing exciting technical and scienceoriented data: the transition from paper work to prototyping and measurements has been done.
- The small scale missions (EUSO-SPB1, EUSO-SPB2, Mini-EUSO and TUS) are going to provide new scientific results.
- Large mission concepts are actively studied: K-EUSO is expected to provide first key results from space on the interpretation of UHECR science, and then POEMMA is expected to unveil the highest energy sky ever explored.

