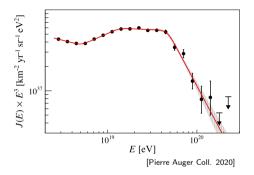
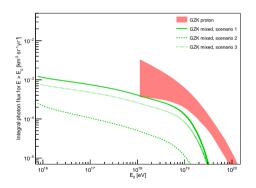
## Predicting the UHE photon flux from GZK-interactions of hadronic cosmic rays using CRPropa 3

## Anna Bobrikova<sup>a,b</sup>, Marcus Niechciol<sup>a</sup>, Markus Risse<sup>a</sup>, Philip Ruehl<sup>a</sup>

 $^a$  University of Siegen, Walter-Flex-Str. 3, Siegen, Germany  $^b$  now at University of Turku 20014 Turun yliopisto, Finland


## International Cosmic Ray Conference 2021, Berlin, Germany




- Pierre Auger Observatory: suppression of cosmic ray spectrum around 50 EeV.
  - $\rightarrow$  maximum source energy?
  - $\rightarrow$  propagation effect?
- Origin of the suppression can be probed by searching for ultra-high-energy (UHE) photons from GZK interactions:

$$p+\gamma_{\mathsf{CMB}} 
ightarrow \Delta^+(1232) 
ightarrow egin{cases} p+\pi^0\ n+\pi^+. \end{cases}$$

- Upper limits on UHE photons from various experiments.
- Simulations of GZK photons help to interprete these limits.



- Data of the Pierre Auger Observatory suggest three possible scenarios for cosmic rays at the sources. [Pierre Auger Coll. 2017]
- Simulation of cosmic ray propagation towards earth (CRPropa 3) results in GZK photon predictions at earth.



## Resulting photon flux is

- mainly determined by spectral index.
- driven by nitrogen-like elements.
- lower than in previous studies of pure proton propagation.