UHECR from high- and lowluminosity GRBs

J. Heinze, D. Biehl, A. Fedynitch, D. Bioncioli, A. Rudolph, W. Winter – MNRAS 498 (2020) arxiv 2006.1430

A. Rudolph, Z. Bosnjak, I. Sadeh, A. Palladino, W. Winter - arxiv 2107.04612

Annika Rudolph International Cosmic Ray Conference (ICRC) July 2021

Gamma-Ray Bursts

A potential source of UHECR?

Observational properties of GRBs

- Energetic outbursts of gamma-rays $E_{iso} \sim 10^{49} - 10^{54} \text{ ergs}$
- Two populations by duration: • (1) Long GRBs : $\geq 2s$ (2) Short GRBs: $\leq 2s$
- Large variety of light curves with fast time variability
- Similar spectra (Band function)
- No correlation between observed GRBs and HE • neutrinos (-> Stacking limits)

Most simple GRB models ruled out as UHECR sources. Need refined models / specific part of the parameter space This talk: Multi-zone model & Low-Luminosity GRBs

coll.

ceCube

Equatoria

Internal shock model

Low-energy gamma rays

 $E_{\rm iso,\gamma} \approx 10^{49} - 10^{54} \, {\rm ergs}$

Alternatives: magnetic reconnection/ photospheric models

Colliding shells emit low-energy gamma rays (internal shock wave)

Jet collides with ambient medium (external shock wave)

> High-energy gamma rays

Visible light

Radio

Central engine: *Plasma acceleration*

> Internal Shocks: Particle acceleration Prompt emission

 $\Gamma_{bulk} \approx 100 - 500$

Slower

shell

Faster

shell

Circumburst medium: Afterglow emission

Image credit: NASA's Goddard Space Flight Center

Internal shock model

Jet collides with ambient medium nal shock wave)

 $\overline{E_{\mathrm{iso},\gamma}} \approx 10^{49} - 10^5$ Low gam **Central engine:**

Plasma acceleration

 Γ_4 , L_4

F., L.

Image credit: NASA's Goddard Space Flight Center

Fitting the UHECR spectrum in a parameter scan over engine realisations <u>MNRAS 498 (2020) arxiv 2006.1430</u>

Fitting the UHECR spectrum and $\langle X_{max} \rangle$ with GRBs

Combined Model

- Remus Code Multi-zone internal shock model
- NeuCosmA Code in-source disintegration/ interactions
- Parameter scan over different engine realisations
- Fit parameters: injection composition, baryonic loading

- PriNCe (Heinze et al, ApJ 873 (2019), 83)
 - GRB distribution (Wanderman, Piran, MNRAS 406 (2010)

•

detection

nucle

 Fit to UHECR spectrum and (X_{max}) (Auger)

Compare to neutrino

UHECR spectrum

Fitting UHECR data: Exploration of different engine realisations

Description of different engine types: from disciplined to stochastic

DESY. UHECR from High- and Low-Luminosity GRBs | Annika Rudolph

Fitting UHECR data: parameter space result

Г_{max}

 $X^2 - X^2_{min}$

Fitting UHECR data: Metallicity

How large is the fraction of heavy elements injected at the source?

Define injected integral mass fraction (per element):

$I_A \equiv$	$\int_{1 \text{ GeV}}^{\infty} \frac{dN'}{dE'_{\rm CR}} E'_{\rm CR} dE'_{\rm CR}$	
	$\frac{1}{\sum_{A} \int\limits_{1{\rm GeV}}^{\infty} \frac{dN'}{dE'_{\rm CR}} E'_{\rm CR} dE'_{\rm CR}}.$	

	SR-0S	SR-LS	WR-MS	WR-HS
Γ_{\max}	800	700	500	400
Γ_{\min}	40	60	120	160
A_{Γ}	0.0	0.1	0.3	0.5
χ^2	51.0	34.3	23.4	30.7
χ^2/dof	3.9	2.6	1.8	2.4
Baryonic loading f_b	80.1	67.1	59.5	108.4
Energy shift δ_E	0.14	-0.14	-0.14	-0.14
Dissipation efficiency ϵ_{diss}	0.28	0.22	0.13	0.14
Fraction super-photospheric f_{sup}	0.67	0.80	0.82	0.43
E_{γ}	$6.67 \cdot 10^{52} \text{ erg}$	$8.00 \cdot 10^{52} \text{ erg}$	$8.21 \cdot 10^{52} \text{ erg}$	$4.27 \cdot 10^{52} \text{ erg}$
$E_{\rm UHECR}^{\rm esc}$ (escape)	$2.01 \cdot 10^{53} \text{ erg}$	$2.10 \cdot 10^{53} \text{ erg}$	$1.85 \cdot 10^{53}$ erg	$1.69 \cdot 10^{53} \text{ erg}$
$E_{\rm CR}^{\rm src}$ (in-source)	$5.11 \cdot 10^{54} \text{ erg}$	$5.13 \cdot 10^{54} \text{ erg}$	$4.62 \cdot 10^{54} \text{ erg}$	$4.36 \cdot 10^{54} \text{ erg}$
$E_{\rm UHECR}^{\rm src}$ (in-source, UHECR)	$3.70 \cdot 10^{53}$ erg	$4.46 \cdot 10^{53} \text{ erg}$	3.97·10 ⁵³ erg	$3.57 \cdot 10^{53} \text{ erg}$
E_{ν}	$7.81 \cdot 10^{49} \text{ erg}$	$2.18 \cdot 10^{50} \text{ erg}$	$1.28 \cdot 10^{51} \text{ erg}$	$1.79 \cdot 10^{51} \text{ erg}$
$E_{ m him,init}$	$2.90 \cdot 10^{55}$ erg	$3.03 \cdot 10^{55}$ erg	4.50.10 ⁵⁵ erg	$7.81 \cdot 10^{55}$ erg
Fraction $I_{\rm H}$	$0.22^{+0.04}_{-0.05}$	$0.00^{+0.10}_{-0.00}$	$0.00^{+0.06}_{-0.00}$	$0.01^{+0.07}_{-0.01}$
Fraction $I_{\rm He}$	$0.00^{+0.01}_{-0.00}$	$0.07^{+0.04}_{-0.05}$	$0.07^{+0.07}_{-0.07}$	$0.27^{+0.05}_{-0.05}$
Fraction I_N	$0.39^{+0.04}_{-0.04}$	$0.29^{+0.06}_{-0.08}$	$0.13_{-0.13}^{+0.11}$	$0.00^{+0.09}_{-0.00}$
Fraction $I_{\rm Si}$	$0.33^{+0.03}_{-0.04}$	$0.63^{+0.03}_{-0.03}$	$0.76_{-0.03}^{+0.03}$	$0.53^{+0.03}_{-0.03}$
Fraction $I_{\rm Fe}$	$0.06^{+0.02}_{-0.02}$	$0.01_{-0.01}^{+0.02}$	$0.05\substack{+0.03\\-0.03}$	$0.19_{-0.03}^{+0.02}$
Heavy mass fraction	$0.78^{+0.22}_{-0.10}$	$0.93^{+0.07}_{-0.13}$	$0.93^{+0.07}_{-0.19}$	$0.72^{+0.28}_{-0.06}$

Fitting UHECR data: Neutrino ranges

Multi-collision model – Parameter scan

- Neutrino range for 3σ contours
- Low Γ_{max} + High $A_{\Gamma} \rightarrow$ high neutrino flux
- Below the IceCube stacking limit but in reach of Gen2

Exploring LL-GRBs as sources of UHECR and VHE gamma-ray radiation arxiv 2107.04612

DESY. UHECR from High- and Low-Luminosity GRBs | Annika Rudolph

Low-Luminosity GRBs

Properties and recent discussions

- Subclass of GRBs but with very low isotropic Luminosities L_{iso} 10⁴⁶ – 10⁴⁹ erg/s
- Sources of UHECR (and HE neutrinos)? (Boncioli et al 2018, Samuelsson et al 2018 & 2020, Zhang et al 2017)

- High local density when compared to high-luminosity GRBs, but so far less then 20 LL GRBs observed → could we detect more of them with future instruments like CTA?
- (Some) LL-GRBs seem to be outliers to known correlations

Choosing two exemplary LL - GRBs

Fact sheets observed properties

Outflow model: Daigne et al 1998 Radiative Code: AM3 (Gao et al 2016)

Simulated spectra (observer frame)

Outflow model: Daigne et al 1998 Radiative Code: AM3 (Gao et al 2016)

Purely leptonic radiation modeling

• Fixed dynamical properties of the outflow

(density, dissipated energy and Lorentz factor as a fct of collision radius and time from multicollision internal shock model)

- Reproduce light curve structure, observed fluence and E_{peak} of reference events
- Vary magnetic field via ϵ_B

in each collision $B' = \sqrt{8\pi\epsilon_B\rho'\epsilon'_{diss}}$ Low ϵ_B : large α , small optical/ UV flux, large VHE component

• Radiative efficiency can put lower bounds on ϵ_B ($\epsilon_B \ge 10^{-3}$)

Simulated spectra

DESY. UHECR from High- and Low-Luminosity GRBs | Annika Rudolph

Maximal energies of cosmic-ray nuclei (source frame)

Using the dynamical evolution of the jet & results of the leptonic radiation modeling

GRB 980425

GRB 100316D

- E_{max} calculated balancing losses and acceleration (NeuCosmA Code, Biehl et al 2017)
- Boncioli et al (2018) Best Fit Parameters: $L_{iso} \sim 5 \ 10^{46} \text{ erg/s Emax}$, Si $\sim 10^{9.7} \text{ GeV}$ (shock rest frame) R $\sim 10^{14} \text{ cm}$

 \rightarrow We reach high enough energies and results are (roughly) compatible!

Conclusion

UHECR in GRBs: IceCube Neutrino limits exclude most simple internal shock models. Need more refined models or specific region of the parameter space

- Multi-collision models separate particle production regions
- Engine behaviour/ stochasticity reflects in time variability of the light curve
- UHECR fit in principle still viable, depending on the engine realisation...
 ... but stochasticity of the engine/ light curve is limited by σ(X_{max})
- Large engine kinetic energies neccessary (general problem of UHECR fits)
- Required heavy mass fraction at injection > 75% (95% CL)
- Neutrino flux likely testable by IceCube Gen2
- LL-GRBs Self-consistent (leptonic) radiation modeling of selected events in the internal shock model
- For low magnetic fields (low ε_B):
 VHE component potentially in reach of ground-based instruments (CTA)
- Maximal energies (in the source frame) for iron can be up to 10¹¹ GeV, for protons up to 10⁹ GeV. High ε_B yield high maximal energies!