Expectations for the high-energy neutrino detection from Starburst galaxies with KM3NeT/ARCA

KANANATA ANALASIANATA ANALASIAN

WALID IDRISSI IBNSALIH, AMBROSONF ANTONIC PASQUALE, PISANTI OFFICE

KM3NeT

Digital optical module (DOM)

115 DUs compose 1 building block

[1] Letter of Intent for KM3NeT 2.0

STARBURST GALAXIES

- Starburst galaxies (SBGs) are a class of galaxies with a high star formation rate.
 - SBGs are known as "reservoirs" of high-energy cosmic-rays.
 - SBGs can be considered as garanteed "factories" of high energy neutrinos.

Any chance to observe the SBG diffuse signal with ARCA telescope?

 $Gev^{-1}cm^{-2}s^{-1}$

DATA ANALYSIS

<u>Objective</u>: Determine the possibility for KM3NeT/ARCA to detect the SBGs diffuse neutrino flux

КМЗМ

Calculation of sensitivity:

- $\Phi_{90} = \Phi_s \cdot \frac{n_{90}}{n_s}$ upper limit following the Neyman method [3]
 - 100 GeV 10 PeV divided in 11 bins

Signal: neutrino SBGs $\nu_{\mu} - \bar{\nu_{\mu}}$ CC

<u>Background</u>: atmospheric muon and neutrino $\nu_{\mu} - \bar{\nu_{\mu}} CC$

Selection chain in order to reject the background:

- pre-selection for up-going events ($\theta_{rec} < 100^\circ$) Multivariate analysis with machine
 - learning: boost decision tree (**BDT**) was used.

bin-per-bin selection

[3] J. Neyman, Phil. Trans. Roy. Soc. A, 236, p. 333, 1937

Several assumptions:

- Only track events.
- 5 years of data taking.
- 2 building block considered.

[Interval energy	Atmospheric muon	Atmospheric neutrino	Signal
ſ	10 ² GeV	175002.2	10917.0	24.47
	10 ^{2.5} GeV	303931.4	29031.8	53.0
eT prelimina	ry 10 ³ GeV	877022.0	26660.6	141.2
	10 ^{3.5} GeV	5347572.6	12061.6	169.9
	10^4 GeV	29622046.0	3176.6	142.8
	$10^{4.5} \text{ GeV}$	30205346.3	519.4	90.0
	10^5 GeV	4762621.1	58.1	37.5
	10 ^{5.5} GeV	203797.1	8.7	10.1
	10^6 GeV	35751.7	0.3	1.5
	10 ^{6.5} GeV	16214.8	0.0184	0.13
	10 ^{6.5} GeV	7942.9	0.00064	0.02

EVENTS BEFORE CUTS

	Interval energy	Atmospheric muon	Atmospheric neutrino	Signal
KM3NeT prelimin	10^2 GeV	3.36	4683.0	15.4
	10 ^{2.5} GeV	37.1	12150.8	34.3
	10^3 GeV	41.5	11397.2	75.8
	10 ^{3.5} GeV	74.2	3137.2	91.7
	10 ⁴ GeV	48.8	411.7	67.7
	10 ^{4.5} GeV	33.3	38.6	35.6
	10 ⁵ GeV	0.0	20.3	13.2
	10 ^{5.5} GeV	0.0	1.08	5.2
	10 ⁶ GeV	0.0	0.03	0.35
	10 ^{6.5} GeV	0.0	0.0085	0.012
	10 ^{6.5} GeV	0.0	0.0	0.0

KM3NET/ARCA SENSITIVITY FOR SBGS SIGNAL

Sensitivity at 90% CL for 2BB of ARCA and 5 years of data taking in comparison with the SBG model obtained from EGB and HESE Sensitivity at 90% CL for 2BB of ARCA and 5 years of data taking in comparison with the SBG model obtained from EGB and CASCADE

5 years of KM3NeT/ARCA will be crucial to constrain the spectral features of "reservoir" sources

WALID IDRISSI IBNSALIH

5

CONCLUSIONS

