New methods to reconstruct X_{max} and the energy of gamma-ray air showers with high accuracy in large wide-field observatories

Eur. Phys. J. C (2021) 81:80 - arXiv: 2010.11390 [hep-ph] R. Conceição, L. Peres, M. Pimenta, B. Tomé

37th ICRC, Berlin, 12th-23rd July 2021

The problem

- In ground-arrays the energy of gammarays is estimated by sampling the particles at the ground
- The primary energy is proportional to the recorded signal at the ground
- The shower fluctuation induces large uncertainties on the energy determination even using MC template-based likelihood fits
 - \Rightarrow At E = 10 TeV results found in the literature quote uncertainties of around 50%

Same energy gamma-rays

- Determine the shower stage and achieve a better
 determination of the primary energy through:
 - 1. The energy at the ground (S_{em}) from the measured signal in the array
 - 2. The shower stage (X_{max}) from the S_{em} or the shower front curvature
 - **3**. The primary energy (**E**₀) from the S_{em}, X_{max} and the energy fraction in the core region
 - f₂₀ energy fraction within 20 m from the shower core $f_{20} = F_{20} / S_{em}$

A new strategy

Simulations

- Vertical gamma primaries with energies between 250 GeV and 15 TeV simulated with CORSIKA
- ♦ Observation level at 5200 m a.s.l.
- The total energy of electromagnetic shower particles was recorded at the observation level and histogrammed in radial bins of 4 meters
- The signal measured by a water Cherenkov detector is proportional to the energy carried by the electromagnetic shower particles hitting it
- Mimic a ground-based gamma-ray observatory such as LHAASO or the future SWGO

Energy at the ground (S_{em})

 \diamond Integrate energy (WCD signal) contained within 50 meters from the shower core (F₅₀)

 A_0 is the estimator for S_{em}

Depth of the Shower Maximum (X_{max})

♦ From the S_{em}

t [ns]

From the shower curvature

♦ X¹max

Depth of the Shower Maximum (X_{max})

- $\diamond \ From \ the \ S_{em}$
 - $\diamond X^{0}_{max}$
- From the shower curvature
 - ♦ X¹max
- A Neglibible bias
 A

• Use shower curvature only for high energies

$$X_{\max}^{R} = \begin{cases} X_{\max}^{1} & \text{if } A_{0} > A_{0}^{\text{crX}} \\ & \text{and } X_{\max}^{1} > 300 \,\text{g cm}^{-2} \\ X_{\max}^{0} & \text{otherwise} \end{cases}$$

Measurement of primary energy (E₀)

$$E_0^{(1)} = S_{\rm em} + C (S_{\rm em})^{\beta}$$

C - calibration constant

Measurement of primary energy (E_0)

$$E_0^{(1)} = S_{\rm em} + C (S_{\rm em})^{\beta}$$

C - calibration constant

$$E_0^{(2)} = S_{\rm em} + C(f_{20}, X_{\rm max}, S_{\rm em}) (S_{\rm em})^{\beta}$$

C - is a function of 3-measured shower observables

Even with the same X_{max} showers can have distinct developments leading to a different energy lateral distribution function at the ground

Measurement of primary energy (E_0)

$$E_0^{(1)} = S_{\rm em} + C (S_{\rm em})^{\beta}$$

C - calibration constant

Using
$$S_{em}$$
, X_{max} , f_{20}

$$E_0^{(2)} = S_{\rm em} + C(f_{20}, X_{\rm max}, S_{\rm em}) (S_{\rm em})^{\beta}$$

C - is a function of 3-measured shower observables

Ruben Conceição

11

The final result

MC template - θ < **45° (2019)**

HAWC - *θ* < **45°** (**2019**)

LHASSO - θ = 0° (2020)

Improvement of more than 10%

The final result

The measurement of X_{max} through the shower curvature has a noticeable effect at the highest energies

The final result

As expected the, the determination of the shower stage plays an important role on the energy reconstruction resolution

Knowing X_{max} the resolution on the determination of S_{em} becomes crucial

There is still space for improvement

Summary

- We present a method to improve the energy reconstruction of shower in ground-array gamma-ray observatories
 Eur. Phys. J. C (2021) 81:80 - arXiv:2010.11390 [hep-ph]
- The energy reconstruction is improved through the determination of the shower development stage, which is achieved combining the following measurable shower quantities:
 - \diamond Energy (signal) collected at the ground, $S_{em};$
 - Estimation of the shower maximum depth, X_{max}, through the shower front plane curvature
 - \diamond Fraction of energy collected near the shower core, f₂₀.

Acknowledgements

UNIÃO EUROPEIA

Fundo Europeu de Desenvolvimento Regional

Backup Slides

Bias on the determination of X_{max} using the shower curvature

t₂₀ parametrization

 $f_{20} = 1 + m(X_{\text{max}}, S_{\text{em}}) C(f_{20}, X_{\text{max}}, S_{\text{em}})$

 $m(X_{\text{max}}, S_{\text{em}}) = b_m + [s_{m0} + s_{m1} \log(S_{\text{em}}/\text{GeV})] X_{\text{max}}$

