Cosmic Ray Transport, Energy Loss, and Influence in the Multiphase ISM

Chad Bustard Postdoctoral Fellow, Kavli Institute for Theoretical Physics (KITP)

Reference: Bustard and Zweibel 2021, ApJ 913, 106 (https://arxiv.org/abs/2012.06585)

Contact: <u>bustard@ucsb.edu</u>

Extreme Science and Engineering Discovery Environment

UC SANTA BARBARA Kavli Institute for Theoretical Physics

Cosmic Ray Confinement

Extrinsic Turbulence (E > 300 GeV)

- Cosmic rays scatter off waves in a turbulent cascade
- Propagation is diffusive along magnetic field lines
- Cosmic rays *don't* transfer energy to gas

Selfconfinement (E < 300 GeV)

- Cosmic rays scatter off waves driven by a resonant streaming instability
- Propagation is at ~ Alfven speed $v_A^{ion} = \frac{B}{\sqrt{4\pi\rho_{ion}}}$

 Cosmic rays do transfer energy to the gas Confinement leads to finite cosmic ray scale heights

CR-driven winds displace gas from galaxies, regulating star formation*

*See e.g. Ipavich 1975, Breitschwerdt+ 1991, Everett+ 2008, Uhlig+ 2012, Hanasz+ 2013, Salem and Bryan 2014, Ruszkowski+ 2017, Farber+ 2018, Mao and Ostriker 2018, Chan+ 2019, Buck+ 2020, Hopkins+ 2020, 2021, Yohan and Dubois 2020, Quataert+ 2021

MHD Simulations w/Athena++

- Evolve cosmic ray energy E_{cr} and flux F_{cr} using two-moment technique borrowed from radiative transfer (Jiang and Oh 2018)
- Transport: Streaming at v_A^{ion} , diffusion due to ion-neutral damping (following Hopkins+ 2021)
- "Collisionless" energy loss + hadronic and Coulomb collisions included

Self-Confinement and Bottlenecks

Kulsrud and Pearce 1969, Skilling 1971, Kulsrud 2005, Zweibel 2017, Wiener+ 2017, 2019

• When $\nabla P_{CR} \neq 0$, resonant streaming instability excites forward-traveling Alfven waves

•
$$v_{st} = \frac{B \cdot \nabla P_{CR}}{|B \cdot \nabla P_{CR}|} v_A^{ion}$$

- Alfven wave damping heats the gas ("collisionless" energy loss)
 - $\cdot \ dE_{CR}/dt \sim v_A^{ion} \cdot \nabla P_{CR}$
 - $\cdot \ dE_g/dt \sim v_A^{ion} \cdot \nabla P_{CR}$
- Tightly coupled CRs trace density perturbations: $P_{cr} \sim v_A^{-4/3} \sim \rho^{2/3}$
- · If $\nabla P_{CR} = 0$, no waves are excited
 - Cosmic rays free-stream
 - This situation arises at density inhomogeneities! "Free-zones" — Skilling (1971)

Self-Confinement and Bottlenecks

Kulsrud and Pearce 1969, Skilling 1971, Kulsrud 2005, Zweibel 2017, Wiener+ 2017, 2019

Transport

1D Simulations

Fiducial Parameters

Cloud radius: $r_c = 10 \text{pc}$ Cloud density: $n_c \approx 10 \text{cm}^{-3}$ Magnetic field: $B \approx 5 \mu G$ Interface width: $t_c = 5 \text{pc}$ Plasma beta: $\beta = P_g / P_B \approx 1.6$

Simplifying assumptions: No gravity, no radiative cooling, $P_{cr}/P_g \sim 1$ regime

Cosmic Rays and Cold Clouds (Bustard + Zweibel 2021)

Chad Bustard, ICRC 2021

8

Assuming Fully Ionized Gas

Ionization-Dependent Transport

Energy Loss

Chad Bustard, ICRC 2021

Assuming fully ionized

Collisionless energy transfer is distributed throughout the cloud

Collisions are biased towards cloud interfaces

Varying ionization

Collisionless energy transfer is focused at cloud interfaces

Collisions are biased towards cloud interiors

Fast transport in partially neutral clouds doesn't greatly affect the **total** energy loss

 Additional diffusivity in diffuse, ionized gas will decrease gamma-ray emission — possibly necessary for simulations to match Fermi-LAT luminosities of external galaxies (Chan+ 2019, Hopkins+ 2021)

Influence

Implications for Wind Driving

Different clump distributions

- Solid lines (fully ionized) and dashed lines (varying ionization) are pretty similar!
 - Because interfaces instigate bottlenecks, even partially neutral clouds can be accelerated
- Results are more sensitive to magnetic field strength

Sensitivity to Magnetic Field Strength

- Perturbations drag magnetic field lines around the clouds, effectively funneling CRs through underdense channels of the ISM, rather than into the clouds themselves
- CRs that "squeak through the cracks" **primarily push out the diffuse ionized gas**, rather than the cold clouds

Conclusions

- Density irregularities in the multiphase ISM induce cosmic ray decoupling and collisionless and collisional losses
- When gas ionization is accounted for
 - Cosmic rays sample more of the ISM and lose more energy in cloud interiors
 - Less momentum is imparted to cold clouds, but only by a factor < a few
 - Cosmic ray influence is concentrated at the cloud interfaces
- Momentum transfer to clouds and spatial footprint of cosmic rays depend most sensitively on magnetic field strength/topology
- What if the clouds move in a turbulent flow? See poster: *Turbulent Reacceleration of Streaming Cosmic Rays: Fluid Simulations*, Chad Bustard and S. Peng Oh

Additional Slides

2D Simulations of a Single Cloud

Cosmic ray pressure gradient stretches the cloud

Cosmic rays uniformly pressurize the cloud

Magnetic field warping pushes cosmic rays around the cloud

Fast Transport in Partially Neutral Gas

Ion-neutral collisions decouple ions and neutrals, damp Alfven waves, and cut off turbulent cascade (e.g. Kulsrud and Cesarsky 1971, Skilling 1971, Farber+ 2018, Xu and Lazarian 2017, Krumholz+ 2020)

$$\begin{array}{ll} \text{Streaming instability} & \Gamma_{CR}(\gamma) \approx \frac{\pi}{4} \frac{\alpha - 1}{\alpha} \Omega_0 \frac{n_{CR}(>\gamma)}{n_i} \left(\frac{v_D}{v_A} + 1 \right) = \Gamma & \text{Wave damping rate} \\ & V_{st} > v_A \text{ needed to} & \Gamma_{in} \approx 10^{-9} f_{neutral} T_{1000}^{1/2} \rho_{-24} \quad s^{-1} \end{array}$$

Plasma Alfven speed >> gas Alfven speed in partially neutral gas

$$v_A^{ion} = \frac{v_A}{\sqrt{f_{ion}}}$$