

UNIVERSITÀ

DEGLI STUDI

DI TORINO

Cosmic ray transport in the proximity of pulsars and the formation of gamma-ray halos

S. Recchia

S. Recchia, M. Di Mauro, F. A. Aharonian, F. Donato, S. Gabici and S. Manconi

Overview

HAWC detected extended gamma-ray halos around Geminga and

Monogem HAWC collaboration, Science 358(2017)

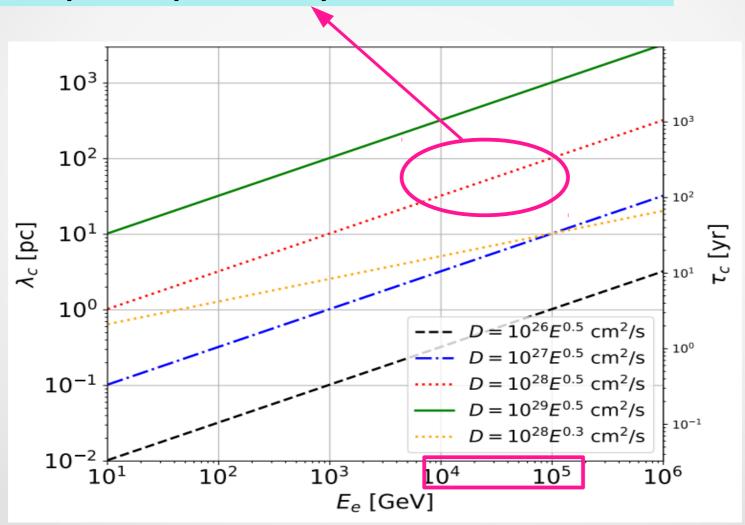
- few degrees across the sky
- Inverse Compton scattering halos
- * 20-200 TeV electrons and positrons
- the extension of such halos has been interpreted in the assumption of pure isotropic diffusion, by the HAWC collaboration and other works
 - * the inferred diffusion coefficient is at least 100 times smaller than typical one
 - established consensus on suppressed diffusion around pulsars
 - such suppression is difficult to explain theoretically, plus poses problems for the location of the sources of multi-TeV electrons (observed up to ~ 20 TeV)
- we revise this model, taking into account the transition between ballistic and diffusive regime in the CR propagation
 - we show that, taking into account such effect, the gamma-ray halos of Geminga and Monogem can be explained with typical values of the diffusion coefficient

Ballistic-diffusive CR transport

- consider CR leptons released from a pulsar
- isotropic diffusion coefficient $D(E_{\text{GeV}}) = D_0 E_{\text{GeV}}^{\delta}$ $\lambda_c(E_{\text{GeV}}) = 0.3 D_{0,28} E_{\text{GeV}}^{\delta}$ pc $\tau_c(E_{\text{GeV}}) = 1.0 D_{0,28} E_{\text{GeV}}^{\delta}$ yr

$$D_0 \sim 10^{28} \,\mathrm{cm}^2/\mathrm{s}$$

$$\delta \sim 0.5$$


mean free path

scattering time

- the mean free path and the scattering time are the spatial and time-scale for isotropization of the particle direction
- $\lambda_c(10 \,\mathrm{TeV}) \approx 10 \mathrm{pc}$

Ballistic-diffusive CR transport

few tens pc, comparable to pulsars halo extension

Ballistic-diffusive CR transport

Prosekin et al. (2015), Aloisio et al. (2005)

- the CR transport after injection from the source is characterized by three regimes
 - \star ballistic for $t < au_c$
 - * diffusive for $t > \tau_c$
 - * a transition between the two (quasi-ballistic)
- if applied at times below T_c the diffusion equations is plagued by the superluminal propagation problem
- in a continuous source, at every moment there are recently injected particles (ballistic) and particles already isotropized (diffusive)

Application to pulsars

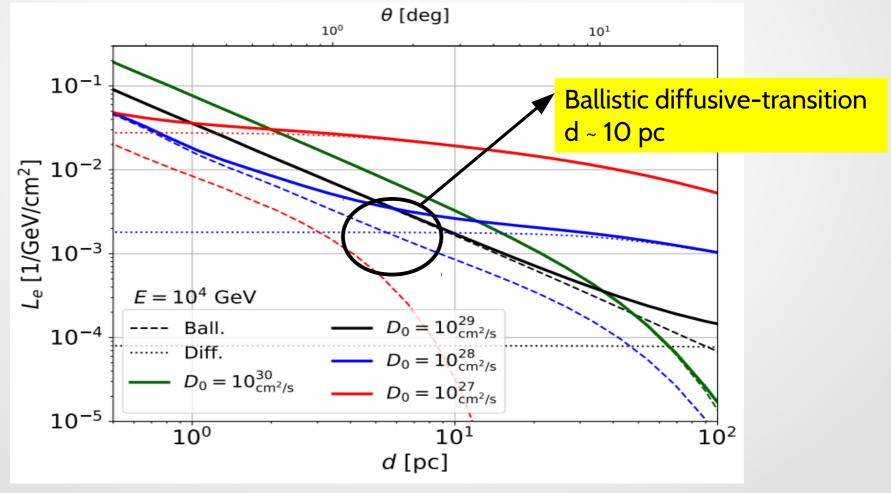
• pulsar of age t_a turns on at t=0 and inject leptons with

$$L(t) = \eta L_0 \left(1 + \frac{t}{\tau_0} \right)^{-2} \qquad \frac{\tau_0 = \text{spin} - \text{down timescale}}{\eta = \text{efficiency}}$$

- particles injected within the last τ_c are treated in the ballistic regime f_{ball}
- particles injected earlier are treated in the diffusive regime f_{diff}
- $f_e = f_{ball} + f_{diff}$ total lepton density
- f_{ball} is found to dominate over f_{diff} below a distance $\sim\lambda_c$

Angular distribution

- Due to the relativistic nature of the ICS process, gamma-rays are emitted preferentially along the direction of the parent CR
- in the strictly ballistic regime the gamma-ray halo would appear as point like no matter the extension of the parent electron-positron halo
- in the diffusive regime the extension of the gamma-ray halo reflects that of the CR halo
 Prosekin et al.(2015)
- function $M(\mu)$ takes into account the angular distribution in the transition between ballistic and diffusion regime


 $f_e = f_{ball} + f_{diff}$ $F_e = f_e M(\mu)$

$$L_e(E,\theta) = \int_0^\infty ds F_e(E,s,\theta)$$

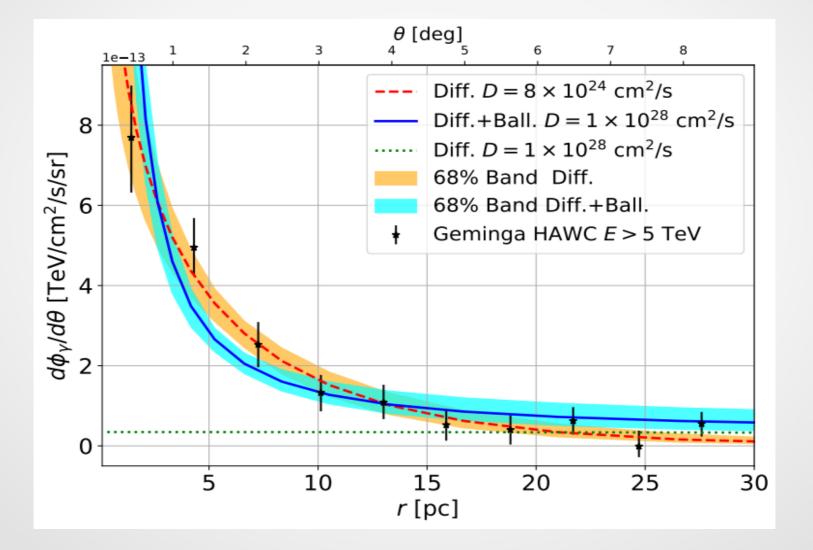
integral along the line of sightgamma-ray morphology

Gamma-ray morphology

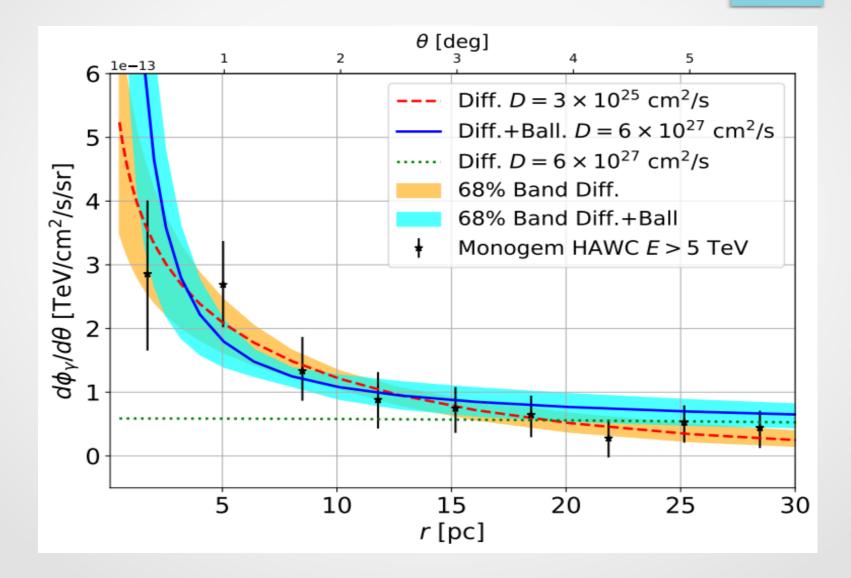
Lepton distribution integrated along the line of sight $10 \ TeV$

Gamma-ray morphology

- up to distances from the source $\sim \lambda_c(E)$ the electron distribution around the pulsar is dominated by the most recently injected particles, that move quasi-ballistically


* $L_e \propto 1/d~$ (... a bit steeper)

- beyond $\sim \lambda_c(E)$ the CR density is dominated by particles that have been isotropized and propagate diffusively
 - L_e is rather flat
 - up to the diffusion-loss length $d \approx \sqrt{4 D(E) t_{\rm loss}(E)}$
- the transition occurs at larger distances from the source at increasing particle and for larger values of the diffusion coefficient


Gamma-ray morphology

- in the low diffusion scenario $D(1 \,{
 m GeV}) \sim 10^{25} \,{
 m cm}^2/{
 m s}$
 - the extension of Geminga and Monogem halos is connected to the diffusion-loss length $d \approx \sqrt{4 D(E) t_{\rm loss}(E)}$
 - * the transition takes place very close to the pulsar and the gamma ray morphology is not affected by such effect
- with a typical diffusion coefficient $D(1 \,{
 m GeV}) \sim 10^{28} \,{
 m cm}^2/{
 m s}$
 - the source extension is connected to the transition between ballistic and diffusive propagation

Fit to data

Fit to data

CR conversion efficiency

- the conversion efficiency of the spin-down luminosity to CR leptons is different in the low diffusion and typical diffusion scenario
 - **Geminga**: 0.3-3% (low diffusion), ~55-65%
 - **Monogem**: 1% (low diffusion), ~30%
- a high conversion efficiency is in agreement with the with the PWN paradigm, in which a major fraction of the spindown luminosity is transferred to high energy electrons

Conclusions

- we investigate the CR propagation released from pulsars taking into account the ballistic-diffusion transition
- when such effect is taken into account, a satisfactory fit of the HAWC data for Geminga and Monogem is obtained without invoking a suppression of the diffusion coefficient with respect to the typical interstellar value
- contrary to the established consensus, a compact gamma-ray pulsar halo does not necessarily imply a small diffusion coefficient