

Reconstruction of Air Shower Events Measured by the Surface Detectors of the TAx4 Experiment

Hyomin Jeong^a on be half of TA collaboration a: Sungkyunkwan University, department of Physics, Korea For ICRC 2021 @ Berlin, Germany

Telescope Array Collaboration

Telescope Array Collaboration

R.U. Abbasi¹, M. Abe², T. Abu-Zayyad^{1,3}, M. Allen³, Y. Arai⁴, E. Barcikowski³, J.W. Belz³, D.R. Bergman³, S.A. Blake³, I. Buckland³, R. Cady³, B.G. Cheon⁵, J. Chiba⁶, M. Chikawa⁷, T. Fujii⁸, K. Fujisue⁷, K. Fujita⁴, R. Fujiwara⁴, M. Fukushima^{7,9}, R. Fukushima⁴, G. Furlich³, R. Gonzalez³, W. Hanlon³, M. Hayashi¹⁰, N. Hayashida¹¹ K. Hibino¹¹, R. Higuchi⁷, K. Honda¹², D. Ikeda¹¹, T. Inadomi¹³, N. Inoue², T. Ishii¹², H. Ito¹⁴, D. Ivanov³, H. Iwakura¹³, H.M. Jeong¹⁵, S. Jeong¹⁵, C.C.H. Jui³, K. Kadota¹⁶, F. Kakimoto¹¹, O. Kalashev¹⁷, K. Kasahara¹⁸, S. Kasami¹⁹, H. Kawai²⁰, S. Kawakami⁴, S. Kawana², K. Kawata⁷, E. Kido¹⁴, H.B. Kim⁵, J.H. Kim³, J.H. Kim³, M.H. Kim¹⁵, S.W. Kim¹⁵, Y. Kimura⁴, S. Kishigami⁴, Y. Kubota¹³, S. Kurisu¹³, V. Kuzmin^{*17}, M. Kuznetsov^{17,21}, Y.J. Kwon²², K.H. Lee¹⁵, B. Lubsandorzhiev¹⁷, J.P. Lundquist^{3,23}, K. Machida¹², H. Matsumiya⁴, T. Matsuyama⁴, J.N. Matthews³, R. Mayta⁴, M. Minamino⁴, K. Mukai¹², I. Myers³, S. Nagataki¹⁴, K. Nakai⁴, R. Nakamura¹³, T. Nakamura²⁴, T. Nakamura¹³, Y. Nakamura¹³, A. Nakazawa¹³, T. Nonaka⁷, H. Oda⁴, S. Ogio^{4,25}, M. Ohnishi⁷, H. Ohoka⁷, Y. Oku¹⁹, T. Okuda²⁶, Y. Omura⁴, M. Ono¹⁴, R. Onogi⁴, A. Oshima⁴, S. Ozawa²⁷, I.H. Park¹⁵, M. Potts³, M.S. Pshirkov^{17,28}, J. Remington³, D.C. Rodriguez³, G.I. Rubtsov¹⁷, D. Ryu²⁹, H. Sagawa⁷, R. Sahara⁴, Y. Saito¹³, N. Sakaki⁷, T. Sako⁷, N. Sakurai⁴, K. Sano¹³, K. Sato⁴, T. Seki¹³, K. Sekino⁷, P.D. Shah³, Y. Shibasaki¹³, F. Shibata¹², N. Shibata¹⁹, T. Shibata⁷, H. Shimodaira⁷, B.K. Shin²⁹, H.S. Shin⁷, D. Shinto¹⁹, J.D. Smith³, P. Sokolsky³, N. Sone¹³, B.T. Stokes³, T.A. Stroman³, T. Suzawa², Y. Takagi⁴, Y. Takahashi⁴, M. Takamura⁶, M. Takeda⁷, R. Takeishi⁷, A. Taketa³⁰, M. Takita⁷, Y. Tameda¹⁹, H. Tanaka⁴, K. Tanaka³¹, M. Tanaka³², Y. Tanoue⁴, S.B. Thomas³, G.B. Thomson³, P. Tinyakov^{17,21}, I. Tkachev¹⁷, H. Tokuno³³, T. Tomida¹³, S. Troitsky¹⁷, R. Tsuda⁴, Y. Tsunesada^{4,25}, Y. Uchihori³⁴, S. Udo¹¹, T. Uehama¹³, F. Urban³⁵, T. Wong³, K. Yada⁷, M. Yamamoto¹³, K. Yamazaki¹¹, J. Yang³⁶, K. Yashiro⁶, F. Yoshida¹⁹, Y. Yoshioka¹³, Y. Zhezher^{7,17}, and Z. Zundel³

Telescope Array

- To study Ultra-High Energy Cosmic Rays(UHECRs) from Extensive Air Showers
 - Indirect measurement
- TA experiment, the hybrid detection with two representative detection scheme
 - Surface Detector, detect secondary particles
 - Fluorescence Detector, detect UV
- Anisotropy study

Telescope Array x 4

- To increase the statistics, TAx4 is suggested as an extension of TA
 - Originally 4 times broader than TA
 - TA(~700km²)
 -> TA+TAx4 (~3,000km²)

E > 57 EeV

Expected to improve significance

this ICRC2021

E > 57 EeV

- 257 SD units had been deployed in early 2019 (Red points on the map)
 -> in total 1700 km²
- <u>2 FD stations</u> had been constructed (magenta squares)
 Details about construction in talk ID 375, by E. Kido in

TA/TALE/TAx4 Array 30 km TAx4 North **Deployed TAx4** SD 10 km TALE SKCT Delta, Utah Original TA SD Area ~ 700 km² 10 km LRCT BRCT Deployed **TAx4 South** TAx4 SD 30 km 50 Kilometers 10 20 30 40 22 Apr 2019 S. Thr. Dept. of Physic: Univ.

Reconstruction procedure

- Example of signal from Surface Detectors
- 11 SDs triggered by 1 event
 - Area : log(Signal intensity)
 - Color : relative time
 - VEM(Vertical Equivalent Muon) Signal intensity by single vertically hit muon

Geometry Fit Result

- Example event at 200321.130409.672230
- All signals (left) and signals in S-T cluster (used in timing fit) by pattern recognition code (middle)

Lateral Distribution Fit

MC Simulation

- AS generation: CORSIKA ver.7.3500
- Hadronic interaction model : QGSJETII-03
- 10x10 ideal grid array
- Primary proton assuming flux ~ E^{-3}
- X, Y core location is 0~1 km (uniformly)
- Generated zenith angle < 60°

ICRC2021

- To improve energy resolution and exclude misreconstructed events, five quality cuts is applied.
 - QC1: N_{SD} >= 4
 - QC2: Zenith angle < 55 deg
 - QC3: χ²/ndof < 4
 - QC4: Pointing direction error <8 deg
 - QC5: σ_{S800}/S800 < 0.5

Energy distribution with QC 5

Data: Nov. 1st, 2019. ~ Oct. 31st, 2020.

Energy resolution = RMS error of E_rec/E_MC -> 22.4% for E > 57 EeV

※For the details of the MC/Data comparison, please see poster ID 890 by K. Fujist

Quality Cut Efficiency from thrown MC

- Left: The number of thrown (black) and passed QCs(blue)
- Right: Efficiency (passes QCs)

ICRC202

Preliminary Spectrum by TAx4 SD

• J(E) and E³J(E) shown with recent other experiment data

Summary

- TAx4 SD has successfully operated more than 1 year.
- Event reconstruction method of the TAx4 is developed by the experimental data and the MC simulation.
- The energy resolution of the TAx4 is estimated to be 22% above 57 EeV assuming that all SDs are available under the ideal condition.
- Preliminary energy spectrum measured by the TAx4 is overall consistent with previous works.

TA ALL MEETING@Pyeongchang, 2019, Korea

Thank you