High-Energy Neutrino Production in Clusters of Galaxies

Saqib Hussain

Collaborators: Elisabete Maria de Gouveia Dal Pino, Rafael Alves Batista & Klaus Dolag

INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIAS ATMOSFÉRICAS

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Cosmic-rays, High-Energy Neutrinos and Gamma-rays Connections

Our Main Goal: Derive the Contribution of Clusters to the Flux of High-Energy Neutrinos

Methodology

Cosmological MHD Simulations of Cluster of Galaxies

- Large-scale structure of matter, including clusters and filaments
- > 1/8 of total volume (= 240 Mpc³)
- Snapshots: z = 0.01; 0.05; 0.2; 0.5; 0.9; 1.5; 5.0

Cluster Maps

Clusters are not spherically symmetric

Cluster Properties

- Profiles of different quantities
- > Temperature (T) fluctuations are indicative of the presence of shocks

Schematic Diagram of CR Simulation

Comparison of Photon Fields

- Bremsstrahlung photon field is dominant at X-rays
- EBL dominates at infrared and optical wavelengths

Mean Free Paths and Trajectory Length

Mean free path and trajectories length are comparable

Flux of CRs and Neutrinos: dependence on cluster mass

High-energy CRs are more trapped in massive clusters and produce more neutrinos there than in less massive

Total Flux of Neutrinos: dependence on redshift

- Clusters at $z \le 0.3$ amounts for Major contribution (Hussain et al., MNRAS 2021)
- Clusters at $0.3 \le z \le 1$ amounts for the largest contribution Fang & Olinto (2016)

Total Flux of Neutrinos: dependence on spectral index and $\mathsf{E}_{_{max}}$

Total Flux of Neutrinos: effects of CRs source evolution

Redshift evolution of CR sources like AGN and SFR can enhance the flux of neutrinos

Conclusions

- > CRs of E < 10^{17} eV are trapped in clusters due to magnetic field (~ 10^{-6} G) and interactions with the ICM gas.
- Neutrino flux (> PeV) comes from the more massive clusters as they have more CR interactions
- > Most of the neutrino flux comes from nearby clusters at z < 0.3 (which has more massive clusters).
- Redshift evolution of CR sources like AGN and SFR, enhance the flux of neutrinos.
- The integrated neutrino flux from ICM can account for sizeable percentage of the IceCube observations, mainly in energy range 100 TeV - 10 PeV.
- > For details see, Hussain et al., MNRAS 2021, arXiv: 2101.07702.