
Performance studies for a next-generation optical sensor for IceCube-Gen2

N. Shimizu*, A. Ishihara, and A. Kappes^a for the IceCube-Gen2 collaboration Chiba Univeristy, ^aWestfälische Wilhelms-Universität Münster, *presenter

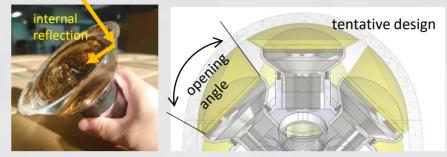
1 Upgrade projects of IceCube

- IceCube is a cubic kilometer neutrino telescope deployed in Antarctica. It consists of 5160 Digital Optical Module (DOM) to detect Cherenkov photons induced by secondary particles from neutrino interactions.
- The IceCube Upgrade plans to install ~700 new optical modules to detect GeV neutrinos and to get better knowledge of ice properties.
- IceCube-Gen2 will increase the volume of the current IceCube detector by one order of magnitude by installing O(10,000) new optical sensors.

2 Optical modules for the Upgrade and Gen2

Name			Glass diameter	U
	[inch]	PMTs	[mm]	[mm]
Gen1 DOM	10	1	330	330
mDOM	3.15	24	356	411
D-Egg	8	2	300	534
mEgg	4	14	300	534
LOM-16	4	16	313	444
LOM-18	4	18	305	540

Gen-1 DOM


Gen-1

Requirements of new optical modules are

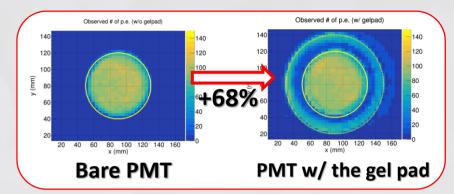
- larger sensitivity than that of Gen-1 DOM
- uniform sensitivity for all incident angles
- Iow cost per optical sensitivity
- low power consumption
- high reliability in harsh environment
- tolerance to high pressure (up to 70 MPa)
 - Optical modules are installed in ice holes drilled by hot water. To reduce the cost, the diameter of hole is limited to $\sim 12^{\prime\prime}$. (smaller than that of Gen-1 hole)
 - Long optical module (LOM) has a diameter of 12" and includes 16 or 18 four inch PMTs in the (elongated) pressure vessel.

③ Enhancement of the effective photo-sensitive area with gel pads

- All existing modules use UV-transparent optical silicone elastomer for coupling.
- For Gen-2 optical modules, because of the elongated shape of the pressure vessel, gel pads are adopted.
- Gel pad has a conical shape and acts as photo collector thanks to total reflection at the side walls. GEANT4 study suggests 60-80 degrees is the optimal opening angle.

 The performance of optical modules is compared using their effective areas, which are evaluated by Monte Carlo simulation:

$$A(\theta, \phi, \lambda) = \frac{A_0}{N_{\text{gen}}} \sum_{i:\text{hit}} P(\lambda, \vec{r}_i)$$

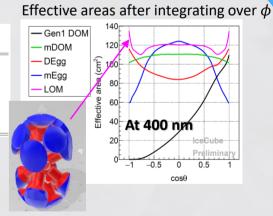

 A_0 : area of generation $P(\lambda, \vec{r_i})$: photo detection efficiency

 Due to absorption in ice, 400 nm is a typical wavelength of arrival photons. We use this wavelength as a benchmark. Another choice is an average weighted with Cherenkov spectrum (useful for close sources).

Conclusion

2023	2	026-	
W mDOM	D-Egg	mEgg	LOM-18
	pgrade	For R&D	Gen2

International Center for Hadron Astrophysics **ICEHAP** CHIBA UNIVERSITY



- Using a parallel spot beam (470 nm), we measured the obtained charge as a function of hit position.
- The gel pad increased the effective photo-sensitive area by 68%, which is in good agreement with the 75% obtained from optical photon simulation.

(4) Evaluation of effective area Effective areas after integrating over θ and ϕ

	Name	Effective area (400 nm) [cm ²]	Cherenkov-averaged effective area [Ratio to Gen-1 DOM]	
	Gen1 DOM	34 - 37	1	
D-E	mDOM	108	3.5 - 4.0	
	D-Egg	94	2.8 - 3.2	
	mEgg	103	3.2 - 3.6	
	LOM-16	105	3.2 - 3.7	
	LOM-18	118	3.6 - 4.2	

Tentative implementation of the internal components of LOM-18 \rightarrow

ICRC 2021

- We evaluated the performance of a tentative LOM-18 design.
- LOM-18 shows 3 times higher effective areas than Gen-1 IceCube optical sensor.

In addition, LOM design shows homogeneous sensitivity on the incident angle.

• Choice of gel pads can increase the efficiency by 70% thanks to total internal reflection. • LOMs achieve ×3 higher effective area than Gen1 DOM and almost (20%) uniform angular coverage.