

Revealing G150.3+4.5 as a dynamically young

supernova remnant with gamma-ray data

J. Devin, M. Lemoine-Goumard, M.-H. Grondin, D. Castro, J. Ballet, J. Cohen and J. W. Hewitt

On behalf of the Fermi-LAT collaboration

devin@apc.in2p3.fr

- ICRC, July 2021 -

First detection in radio

[Gerbrandt et al. 2014]

Radio spectral index:

 $\alpha = -0.62 \pm 0.07$

 $\alpha = -0.38 \pm 0.10$ (region size: 1.07° x 0.31°)

The SNR G150.3+4.5

J. Devin

Fermi-LAT data analysis

Morphological analysis (1 GeV — 3 TeV)

Energy-dependent morphology?

Gamma-ray morphology does not shrink at higher energies

Displacement of the centroid may be due to a possible contamination from 4FGL J0426.5+5434 at low energy

Spectral analysis (300 MeV – 3 TeV)

Spectral analysis (300 MeV – 3 TeV)

Spectral analysis (300 MeV – 3 TeV)

Spatial model (Gaussian or disk) has a negligible impact on the spectral analysis

We used the morphological and spectral properties of the disk

X-ray observations and distance estimate

• ROSAT all-sky survey (0.1 - 2.4 keV)

No significant thermal and nonthermal emission

Sedov-Taylor self-similar solution:

$$R_{\rm ST} \approx 0.314 \times \left(\frac{E_{51}}{n_0}\right)^{1/5} t_{\rm yr}^{2/5} \ \mathrm{pc}$$

Assuming $E_{51} = 1$ and knowing the angular size of G150.3+4.5, we used different combinations of *d* and *t* to **calculate the corresponding ambient density**

- Emission modeled as an absorbed thermal NEI plasma for each combination of t, n₀, N_H and T_e/T_p
- For each d, we calculated the corresponding N_H and we obtained an **upper limit on n**₀.

The maximal ambient density allowed by ROSAT data is n₀ = 3.6 x 10⁻³ cm⁻³

Minimal distance estimate

At Dec ~ 55°, a SNR younger than 1 kyr should have been reported in historical records $(t_{min} = 1 \text{ kyr})$

for an ambient density $n_0 = 1.5 \times 10^{-3} \text{ cm}^{-3}$ compatible with ROSAT data

Maximal distance estimate

➡ d_{max} = 4.5 kpc

Evolutionary stage of G150.3+4.5

G150.3+4.5 is spectrally similar to the dynamically young and shell-type SNRs

G150.3+4.5 has likely a **low luminosity** (no hint for an interaction with a molecular cloud)

Evolutionary stage of G150.3+4.5

G150.3+4.5 is spectrally similar to the dynamically young and shell-type SNRs

G150.3+4.5 has likely a **low luminosity** (no hint for an interaction with a molecular cloud)

The hard spectral shape of G150.3+4.5 and its likely low luminosity supports the dynamically young and non-interacting scenario, and therefore a near distance

Broadband nonthermal modeling

d (kpc) / t (kyr)	<i>B</i> (µG)	$W_{\rm p}$ (erg)	K_{ep}	$s_{e,1} = s_{e,2}$	s _p	$n_0 ({\rm cm}^{-3})$	$E_{\text{max,e}}$ (TeV)	$E_{\rm max,p}$ (TeV)	k_0	$v_s ({\rm km}{\rm s}^{-1})$
0.7 / 1.0	5	10^{50}	1×10^{-3}	1.8*	1.8	1.5×10^{-3}	5.2	5.2	16	7163

Leptonic scenario and E_{max} > few TeV for the two extreme distances

- Extended gamma-ray emission spatially coincident with the radio SNR G150.3+4.5, and with a hard spectrum
- No significant thermal and nonthermal emission is detected with ROSAT data and we estimated a minimal and maximal distances of 0.7 kpc and 4.5 kpc
- ➡ G150.3+4.5 is spectrally similar to the dynamically young and shell-type SNRs
- Broadband nonthermal emission explained with a leptonic scenario, with B = 5 muG and acceleration of particles up to few TeV energies

Deeper multi-wavelength observations are required: distance? Environment of G150.3+4.5 and its synchrotron spectrum? Maximal energy reached by particles?

[Devin et al. 2020, A&A, 643, A28]

Observations at very-high energy needed !
Deeper pulsation searches on 4FGL J0426.5+5434

J. Devin