Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors T. M. Venters¹, M. H. Reno², J. F. Krizmanic^{1,3} on behalf of the JEM-EUSO and POEMMA Collaborations

Background

- Many candidate astrophysical neutrino sources associated with transient events
- Space and suborbital Cherenkov expts. detect up-going v_{τ} air showers:
- v_{T} enters Earth \rightarrow charged current interaction \rightarrow T emerges from ground $\rightarrow \tau$ decays \rightarrow air shower \rightarrow Cherenkov signal
- In space: T_{orb} (~ 95mins.) + slewing \rightarrow Access to large parts of sky > Space missions uniquely suited for transient follow-up
- POEMMA is a proposed space-based mission featuring an optical Cherenkov camera for detecting very-high energy neutrinos.
- EUSO-SPB2 is a balloon-borne experiment and is a pathfinder mission for POEMMA.
- Launch expected in Spring 2023 from Wanaka, New Zealand.

Method

Scenarios

Long Burst

- Event duration \gtrsim 1 day POEMMA satellite separation
- \sim 50 km (lower E threshold)
- duty cycle (f_t) determined by Sun and Moon constraints

Short Burst

- Event duration ~ 1000 sec.
- POEMMA satellite separation ~ 300 km (higher E threshold) • Satellites observe indep.
- Ignoring Sun and Moon ($f_t = 1$)
- Assume best-case scenario:
- Source dips below limb at t_0

Instantaneous Acceptance:

$$A\left(\alpha\left(t\right), E_{\nu_{\tau}}\right) \simeq \int dP_{\text{obs}}\left(E_{\nu_{\tau}}, \beta_{\nu}, s\right) A_{\tau}$$

Average over Observ. Time:

$$\left\langle A\left(E_{\nu_{\tau}}\right)\right\rangle_{T_{\text{obs}}} = \frac{1}{T_{\text{obs}}} \int_{t_{0}}^{t_{0}+T \text{obs}} A\left(\alpha\left(t\right), E_{\nu_{\tau}}\right)^{T_{0}+T \text{obs}}$$

All-flavor Sensitivity:

$$\frac{2.44}{n(10)} \times \frac{\left(N_{\rm fl} = 3\right) E_{\rm fl}}{f_t \left\langle A(E_\nu) \right\rangle_{\rm T}}$$

Number Events:

$$N_{\rm ev} = \int_{\Delta E_{\nu}} \phi_{\nu} \left(E_{\nu}, z \right) \left\langle A \left(E_{\nu} \right) \right\rangle_{T_{\rm ob}}$$

 $\phi_{\nu}(E_{\nu},z) = \text{at-Earth v fluence}$

Results

EUSO-SPB2 ν Horizon Distance Source Class TDE $M_{\text{SMBH}} = 5 \times 10^6 M_{\odot}$ 9 Mpc TDE Base 4.5 Mpc BBH merger -Low Fluence BBH merger -High Fluence BNS merger sGRB w/ Mod

> Horizon Distances for Detecting at Least 1 Neutrino

> > Cosmol. Event Rate

- binary black hole (BBH) mergers.
- to well beyond the Galaxy.

Results (cont.)

Prospects for ToO Detection

Conclusions

Most promising candidate astrophysical neutrino sources are tidal disruption events (TDEs), binary neutron star (BNS) mergers, and

Both POEMMA and EUSO-SPB2 will be able to detect these sources out

Prospects for detecting a ToO are promising for POEMMA.

ToO studies to be included in vSpaceSim neutrino simulation package.

References

[1] The POEMMA Collab., 2021, JCAP, 06, 007 [2] Eser, J., Olinto, A. V., & Wiencke, L., et al., 2021, PoS (ICRC21), 404 [3] Reno, M. H., Venters, T. M., & Krizmanic, J. F., et al., 2021, PoS (ICRC21), 1201 [4] Krizmanic, J. F., et al., 2021, PoS (ICRC21), 1205 [5] Venters, T. M., et al., 2020, PRD, 102, 123013 [6] Reno, M. H., Venters, T. M., & Krizmanic, J. F., 2019, 100, 063010

Center, ²University of Iowa, ³UMBC/CRESST