Transient Source for the Highest Energy GALACTIC COSMIC RAYS

Glennys R. Farrar and Chen Ding New York University

and future collaboration with Marco Muzio & Diego Monzon

G. Farrar, ICRC July, 2021

Identifying source of Galactic Component "B" [term "B" coined by Hillas 2005]

- Supernova Remnant (SNR) acceleration is insufficient to explain highest energy GCRs
- - favors transient source
 - localize it
 - identify possible relic
 - power requirement & demographics

Use Auger anisotropy data to determine direction and magnitude of Galactic B dipole

2

Proposals for GCB acceleration

- Acceleration in Galactic termination shock ->
 - dipole direction: \approx toward or away from GC (symmetry)
 - dipole magnitude: likely small (shock large $\& \approx$ spherical)
- - flux, anisotropy \Leftrightarrow location/time of the event
 - unique SNR candidate

Transient (SN in star cluster (Bykov+17,18), W-R stellar wind, <u>ccSN in binary pair</u>) • source most likely in the Galactic plane (*young* massive binary); not necessarily centered

Find GCB anisotropy by subtracting extragalactic contribution

ApJ 2020; arXiv2002.06172

Figure 1. Reconstructed equatorial-dipole amplitude (left) and phase (right). The upper limits at 99% CL are shown for all the energy bins in which the measured amplitude has a chance probability greater than 1%. The gray bands indicate the amplitude and phase for the energy bin $E \ge 8$ EeV. Results from other experiments are shown for comparison (IceCube Collaboration 2012, 2016; KASCADE-Grande Collaboration 2019).

10

- Anisotropy above 8 EeV well-explained by Large Scale Structure and magnetic deflections in GMF and EGMF (Ding, Globus, Farrar ApJL 2021) [see Ding CR1:1415]
- Composition below 8 EeV (Auger) shows presence of heavy Galactic B component:
 - GCR fraction (0.5, 0.3, 0.1) in (1-2, 2-4, 4-8) EeV bins
 - Peak GCR rigidity ~ 10^{17.2} eV
- Determine the EGCR contribution to anisotropy at lower energies (E-dep weak, from DGF21 analysis)

Residual is anisotropy of GCB

GCB DIPOLE direction probability

G. Farrar, ICRC July, 2021

GCB DIPOLE IS NOT AT THE GALACTIC CENTER!

Direction of GCB dipole consistent with being E-indept

Amplitude of Galactic dipole $\alpha \approx 0.05$

Total dipole shifts towards GC as GCA takes over

Dipole from Transient Source

CR propagation from a transient source in a homogeneous diffusive field **depends only on rigidity** *R* **= ***E*/*Z*:

$$n(r,t) = \frac{N_0 \ e^{-r^2/(4 \ D(R) \ t)}}{(8\pi \ D(R) \ t)^{3/2}}$$

The dipole *anisotropy* depends *only* on source distance **r** and time since the event **t**, **not on D** (GRF + T. Piran, astro-ph/0010370):

- GCB anisotropy is approximately independent of energy and composition
- Better approx: higher rigidity CRs escape more easily; E bins \neq R bins mag α can depend weakly on E.
- Best: tracking to account for anisotropic diffusion (+Diego Monzon, M. Muzio)

G. Farrar, ICRC July, 2021

Inferring source of GCB; Energy budget

G. Farrar, ICRC July, 2021

Available energy in ccSN ~ 10^{54} erg \Rightarrow CR production uses small fraction

SOURCE demographics

- Explosion outflow must collide with external wind to increase max rigidity (via colliding shock flow)
 - (Bykov+17,18) suggest SN in young star cluster, but no SNR + star cluster in anisotropy direction
- New suggestion: core collapse SN in binary pair of massive stars.
 - massive stars are mostly in binaries.
 - typically have Wolf-Rayet wind (high velocity, intermediate mass)
 - pair separates after explosion so don't expect remnant pulsar to have a binary companion

- 1 ccSN in MW /100 yr \Rightarrow 300 ccSNe in 30 kyr.
- ~4% of all SNe are within 2 kpc of us.
- \rightarrow ~12 ccSN within 2 kpc in 30 kyr time window.
- I event currently contributing →

10 - 100% of core collapse SNe produce High Energy CRs (E/Z >~100 PeV)

- reasonable, because most massive stars are in binaries.

• for the future: MC sim for distribution of anisotropies

CONCLUSIONS

- We have measured the dipole anisotropy of the highest energy Galactic CRs (GCB).
 - < Rigidity > \approx 0.15 EV, A up to \approx 15
 - Dipole anisotropy $\alpha \approx 0.05$, towards $B \approx 0^{\circ}$ (from theory), $L \approx 70^{\circ} \pm 15^{\circ}$ (from data)
 - dipole toward GC excluded at > 6 σ
 - Dipole anisotropy not toward GC:
 - Galactic wind termination shock disfavored
 - favors transient source
- Observed GCB Anisotropy strength and direction \rightarrow SNR G65.3+5.7 / PSR1931+30 (?)
 - 0.8 kpc away, 20+2.4 kyr ago excellent agreement with $\alpha \approx 0.05$
 - $\leq 10^{45}$ erg in CRs with E>100 PeV energy budget very comfortable (~10⁵⁴ erg available)
- Proposed system:

 - population statistics: O(1) probability of seeing anisotropy and flux level observed

G. Farrar, ICRC July, 2021

Next steps

with Diego Monzon and Marco Muzio joining in

• Fit for composition/rigidity spectrum of GCB and high energy part of GCA (Muzio)

- Input: Auger spectrum and composition; high mass GCA from ARGO-YBT+LHAASO (joint), Tunka-25, Yakutsk, & TIBET-III
- [compare to Kascade-Grande asymmetry (Ahlers19)]

More accurate mapping between GCB dipole direction and true source direction (Monzon)

- simulate trajectories in GMF
- Predict energy dependence of GCB anisotropy
- More accurate anisotropy for G65.3+5.7
- High precision timing of PSRJ1931+30
 - age: confirm/exclude association with SNR
 - measure magnetic field: magnetar?

G. Farrar, ICRC July, 2021

Knowing GCA/B composition in all energy bins >100 PeV -> separate GCA & GCB dipole; predict total dipole evolution with energy

