Convolutional Neural Networks for Low Energy Gamma-Ray Air Shower Identification with HAWC

  • 98 views

  • 0 favorites

  • <p>ICRC</p>

    ICRC

  • 1391 media
  • uploaded June 25, 2021

Discussion timeslot (ZOOM-Meeting): 13. July 2021 - 12:00
ZOOM-Meeting URL: https://desy.zoom.us/j/98542982538
ZOOM-Meeting ID: 98542982538
ZOOM-Meeting Passcode: ICRC2021
Corresponding Session: https://icrc2021-venue.desy.de/channel/52-Analysis-Methods-Catalogues-Community-Tools-Machine-Learning-GAD-GAI/64
Live-Stream URL: https://icrc2021-venue.desy.de/livestream/Discussion-04/5

Abstract:
'A major task in ground-based gamma-ray astrophysics analyses is to separate events caused by gamma rays from the overwhelming hadronic cosmic-ray background. In this talk we are interested in improving the gamma ray regime below 1 TeV, where the gamma and cosmic-ray separation becomes more difficult. Traditionally, the separation has been done in particle sampling arrays by selections on summary variables which distinguish features between the gamma and cosmic-ray air showers, though the distributions become more similar with lower energies. The structure of the HAWC observatory, however, makes it natural to interpret the charge deposition collected by the detectors as pixels in an image, which makes it an ideal case for the use of modern deep learning techniques, allowing for good performance classifers produced directly from low-level detector information.'

Authors: Ian Watson | For the HAWC Collaboration
Collaboration: HAWC

Indico-ID: 1423
Proceeding URL: https://pos.sissa.it/395/770

Tags:
Presenter: Ian Watson