Events
1st PIER Science Slam
WPC Theoretical Physics Symposium 2021
International Cosmic Ray Conference 2021
1st PIER Science Slam
WPC Theoretical Physics Symposium 2021
International Cosmic Ray Conference 2021
58 views
3 likes
0 favorites
Discussion timeslot (ZOOM-Meeting): 19. July 2021 - 18:00
ZOOM-Meeting URL: https://desy.zoom.us/j/91999581729
ZOOM-Meeting ID: 91999581729
ZOOM-Meeting Passcode: ICRC2021
Corresponding Session: https://icrc2021-venue.desy.de/channel/39-Astrophysical-Neutrinos-Theoretical-amp-Experimental-Results-NU/70
Live-Stream URL: https://icrc2021-venue.desy.de/livestream/Discussion-05/6
Abstract:
'Shock interaction has been argued to play a role in powering a range of optical transients, including supernovae, classical novae, stellar mergers, tidal disruption events, and fast blue optical transients. These same shocks can accelerate relativistic ions, generating high-energy neutrino and gamma-ray emission via hadronic pion production. We introduce a model for connecting the radiated optical fluence of non-relativistic transients to their maximal neutrino and gamma-ray fluence. We apply this technique to a wide range of extra-galactic transient classes in order to place limits on their contributions to the cosmological high-energy neutrino backgrounds. Based on a simple model for diffusive shock acceleration at radiative shocks, calibrated to novae, we demonstrate that several of the most luminous transients can accelerate protons up to $10^{16}$ eV, sufficient to contribute to the IceCube astrophysical background. Furthermore, we show that several of the considered sources−particularly hydrogen-poor supernovae−may serve as “gamma-ray- hidden” neutrino sources due to the high gamma-ray opacity of their ejecta, evading constraints imposed by the non-blazar Fermi-LAT background.'
Authors: Ke Fang
Indico-ID: 499
Proceeding URL: https://pos.sissa.it/395/1219