TAROGE-M: Radio Observatory on Antarctic High Mountain for Detecting Near-Horizon Ultra-High Energy Air Showers

  • 70 views

  • 0 favorites

  • <p>ICRC</p>

    ICRC

  • 1391 media
  • uploaded June 25, 2021

Discussion timeslot (ZOOM-Meeting): 13. July 2021 - 18:00
ZOOM-Meeting URL: https://desy.zoom.us/j/91896950007
ZOOM-Meeting ID: 91896950007
ZOOM-Meeting Passcode: ICRC2021
Corresponding Session: https://icrc2021-venue.desy.de/channel/08-Radio-Observations-of-Cosmic-Rays-CRI-NU/82
Live-Stream URL: https://icrc2021-venue.desy.de/livestream/Discussion-06/7

Abstract:
'The TAROGE-M observatory is an autonomous antenna array on the top of Mt.~Melbourne ($sim2700$ m altitude) in Antarctica, designed to detect radio pulses from ultra-high energy (over $10^{17}$ eV) air showers coming from near-horizon directions. The targeted sources include cosmic rays, Earth-skimming tau neutrinos, and most of all, the anomalous near-horizon upward-going events of yet unknown origin discovered by ANITA experiments. The detection concept follows that of ANITA: monitoring large area of ice from high-altitude and taking advantage of strong geomagnetic field and quiet radio background in Antarctica, whereas having significantly greater livetime and scalability. rnrnThe TAROGE-M station, upgraded from its prototype built in 2019, was deployed in January 2020, and consists of 6 log-periodic dipole antennas pointing horizontally with bandwidth of 180-450 MHz. The station is then calibrated with drone-borne transmitter, with which the event reconstruction obtained $sim0.3^circ$ angular resolution. The station was then smoothly operating in the following month, with the live time of $sim30$ days, before interrupted by a power problem, and its online filtering has identified several candidate cosmic-ray events and sent out via satellite communication. In this paper, the instrumentation of the station for polar and high-altitude environment, its radio-locating performance, the preliminary result on cosmic-ray detection, and the future extension plan are presented.'

Authors: Shih-Hao Wang | For the TAROGE and the ARIANNA Collaborations
Collaboration: TAROGE, ARIANNA

Indico-ID: 1327
Proceeding URL: https://pos.sissa.it/395/1173

Tags:
Presenter: Shih-Hao Wang

Additional files