Calibration of Aerogel Tiles for the RICH of the HELIX Experiment
-
70 views
-
0 likes
-
0 favorites
- uploaded July 7, 2021
Discussion timeslot (ZOOM-Meeting): 16. July 2021 - 18:00
ZOOM-Meeting URL: https://icrc2021.desy.de/pf_access_abstracts
Corresponding Session: https://icrc2021-venue.desy.de/channel/Presenter-Forum-1-Evening-All-Categories/48
Abstract:
'HELIX (High Energy Light Isotope eXperiment) is a balloon-borne instrument designed to measure the chemical and isotopic abundances of light cosmic-ray nuclei. In particular, HELIX is optimized to measure 10Be and 9Be in the range 0.2 GeV/n to beyond 3 GeV/n. To achieve this, HELIX utilizes a 1 Tesla superconducting magnet with a high-resolution gas drift tracking system, time-of-flight detector, and a ring-imaging Cherenkov (RICH) detector. The RICH detector consists of aerogel tile radiators (refractive index ~1.15) with a silicon photomultiplier detector plane. To adequately discriminate between 10Be and 9Be isotopes, the refractive index of the aerogel tiles must be known to a precision of 0.1%. In this contribution, detailed mapping of the refractive index across the aerogel tiles is presented and the methodology used to obtain these measurements is discussed.'
Authors: stephan o'brien
Collaboration: HELIX
Indico-ID: 1372
Proceeding URL: https://pos.sissa.it/395/090
stephan o'brien