Exploring the variability properties of gamma-ray emission from blazars

  • 38 views

  • 0 favorites

  • uploaded June 25, 2021

Discussion timeslot (ZOOM-Meeting): 16. July 2021 - 18:00
ZOOM-Meeting URL: https://icrc2021.desy.de/pf_access_abstracts
Corresponding Session: https://icrc2021-venue.desy.de/channel/Presenter-Forum-1-Evening-All-Categories/48
Abstract:
'I present the results of variability study of a sample of 20 powerful blazars using Fermi/LAT (0.1-300 GeV) observations. We studied decade-long observations applying various analysis tools such as flux distribution, symmetry analysis, and RMS-flux relation. It was found that the γ-ray flux distribution closely resembles a log-normal probability distribution function and can be characterized by linear RMS-flux relation. The power spectral density analysis shows the statistical variability properties of the sources as studied are consistent with flicker noise, an indication of long-memory processes at work. Statistical analysis of the distribution of flux rise and decay rates in the light curves of the sources, aimed at distinguishing between particle acceleration and energy-dissipation timescales, counterintuitively suggests that both kinds of rates follow a similar distribution and the derived mean variability timescales are on the order of a few weeks. The corresponding emission region size is used to constrain the location of γ-ray production sites in the sources to be a few parsecs. Additionally, using Lomb-Scargle periodogram and weighted wavelet z-transform methods and extensive Monte Carlo simulations, we detected year-timescale quasi-periodic oscillations in the sources S5 0716+714, Mrk 421, ON +325, PKS 1424-418, and PKS 2155-304. We also performed recurrence quantification analysis of the sources and directly measure the deterministic quantities, which suggest that the dynamical processes in blazars could be a combination of deterministic and stochastic processes, while some of the source light curves revealed significant deterministic content.'

Authors: Gopal Bhatta
Indico-ID: 345
Proceeding URL: https://pos.sissa.it/395/606

Tags:
Presenter: Gopal Bhatta

Additional files

More Media in "Gamma Ray Direct"